

Django2.1 Tutotrial Note

這網站

https://2019-django21-tutotrial-note.readthedocs.io/en/latest/index.html

我練習官網教程幾十次，並不是逐字看的，總是抓著能做的先做，有問題時回來找解簽，每次或多或少都有些心得，也曾經有些誤解。
總而言之，實戰很重要，觀念也很重，知行要合一。

有這個機會理解了 Read The Doc

https://readthedocs.org/

同時也找到 Django 目前最新版本的文檔的代碼

https://github.com/django/django

經過實驗，可以以最小的更改原 .txt 為 .rst 即可使用。

這樣子，就可以把我的心得筆記直接放在文件裡。

Note 的寫法

Note

This is note text. Use a note for information you want the user to
pay particular attention to.

If note text runs over a line, make sure the lines wrap and are indented to
the same level as the note tag. If formatting is incorrect, part of the note
might not render in the HTML output.

Notes can have more than one paragraph. Successive paragraphs must
indent to the same level as the rest of the note.

Warning 的寫法

Warning

This is warning text. Use a warning for information the user must
understand to avoid negative consequences.

Warnings are formatted in the same way as notes. In the same way,
lines must be broken and indented under the warning tag.

現在，2018-12-28，發現生成的PDF沒有上述 Note Warning 的效果，在實驗 cs50 的工具是否可以實現。

https://cs50.readthedocs.io/render50/

	To know which Python you’re using, it applies to virtual venv as well

$ which python

Table of Contents

	Writing your first Django app, part 1
	套路練習

	Creating a project

	The development server

	Creating the Polls app

	Write your first view
	path() argument: route

	path() argument: view

	path() argument: kwargs

	path() argument: name

	Writing your first Django app, part 2
	Database setup

	Creating models

	Activating models

	Playing with the API

	Introducing the Django Admin
	Creating an admin user

	Start the development server

	Enter the admin site

	Make the poll app modifiable in the admin

	Explore the free admin functionality

	Writing your first Django app, part 3
	Overview

	Writing more views

	Write views that actually do something
	A shortcut: render()

	Raising a 404 error
	A shortcut: get_object_or_404()

	Use the template system

	Removing hardcoded URLs in templates

	Namespacing URL names

	Writing your first Django app, part 4
	Write a simple form

	Use generic views: Less code is better
	Amend URLconf

	Amend views

	Writing your first Django app, part 5
	Introducing automated testing
	What are automated tests?

	Why you need to create tests
	Tests will save you time

	Tests don’t just identify problems, they prevent them

	Tests make your code more attractive

	Tests help teams work together

	Basic testing strategies

	Writing our first test
	We identify a bug

	Create a test to expose the bug

	Running tests

	Fixing the bug

	More comprehensive tests

	Test a view
	A test for a view

	The Django test client

	Improving our view

	Testing our new view

	Testing the DetailView

	Ideas for more tests

	When testing, more is better

	Further testing

	What’s next?

	Writing your first Django app, part 6
	Customize your app’s look and feel

	Adding a background-image

	Writing your first Django app, part 7
	Customize the admin form

	Adding related objects

	Customize the admin change list

	Customize the admin look and feel
	Customizing your project’s templates

	Customizing your application’s templates

	Customize the admin index page

	What’s next?

Writing your first Django app, part 1

Warning

原完整網頁參照官網 https://docs.djangoproject.com/en/2.1/intro/tutorial01/
，以下是只是個人的心得筆記。(by Mark陳炳陵）

套路練習

$ python3.6 -v venv venv
$. venv/bin/activate
(venv)$ pip install django
(venv)$ django-admin startproject mysite
(venv)$ cd mysite
(venv)$ python manage.py startapp polls

	*** edit mysite/urls.py

	add path(‘polls/’, include(‘polls.urls’)), above or below path(‘admin/’, admin.site.urls),
add include to the line from django.urls import path

	*** new polls/urls.py

	from django.urls import path
from . import views

	urlpatterns = [

	path(‘’, views.index, name=’index’),

]

	*** add def index to polls/views.py

	from django.http import HttpResponse
def index(request):

return HttpResponse(“Hello, world. You’re at the polls index.”)

(venv)$ python manage.py runserver
*** browser, visit 127.0.0.1:8000

Warning

套路練習主要是練習熟練，一方面建立整體開發次序。(by Mark陳炳陵）

Let’s learn by example.

Throughout this tutorial, we’ll walk you through the creation of a basic
poll application.

It’ll consist of two parts:

	A public site that lets people view polls and vote in them.

	An admin site that lets you add, change, and delete polls.

We’ll assume you have Django installed already. You can
tell Django is installed and which version by running the following command
in a shell prompt (indicated by the $ prefix):

$ python -m django –version

[image: tutorial01_01.png]
[image: tutorial01_02.png]
[image: tutorial01_03.png]

Warning

一開始比對時，發現 $ python -m django –version 沒有出現，
查看代碼是有 .. console:

在 https://docs.djangoproject.com/en/2.1/intro/tutorial01/
,猜想應該是使用了js技術

2018-12-29 10:09, by Mark 陳炳陵

If Django is installed, you should see the version of your installation. If it
isn’t, you’ll get an error telling “No module named django”.

This tutorial is written for Django latest, which supports Python 3.5 and
later. If the Django version doesn’t match, you can refer to the tutorial for
your version of Django by using the version switcher at the bottom right corner
of this page, or update Django to the newest version. If you’re using an older
version of Python, check faq-python-version-support to find a compatible
version of Django.

See How to install Django for advice on how to remove
older versions of Django and install a newer one.

Where to get help:

If you’re having trouble going through this tutorial, please post a message
to |django-users| or drop by #django on irc.freenode.net to chat with other Django users who might
be able to help.

Creating a project

If this is your first time using Django, you’ll have to take care of some
initial setup. Namely, you’ll need to auto-generate some code that establishes a
Django project – a collection of settings for an instance of Django,
including database configuration, Django-specific options and
application-specific settings.

From the command line, cd into a directory where you’d like to store your
code, then run the following command:

This will create a mysite directory in your current directory. If it didn’t
work, see troubleshooting-django-admin.

Note

You’ll need to avoid naming projects after built-in Python or Django
components. In particular, this means you should avoid using names like
django (which will conflict with Django itself) or test (which
conflicts with a built-in Python package).

Where should this code live?

If your background is in plain old PHP (with no use of modern frameworks),
you’re probably used to putting code under the Web server’s document root
(in a place such as /var/www). With Django, you don’t do that. It’s
not a good idea to put any of this Python code within your Web server’s
document root, because it risks the possibility that people may be able
to view your code over the Web. That’s not good for security.

Put your code in some directory outside of the document root, such as
/home/mycode.

Let’s look at what :djadmin:`startproject` created:

mysite/
 manage.py
 mysite/
 __init__.py
 settings.py
 urls.py
 wsgi.py

These files are:

	The outer mysite/ root directory is just a container for your
project. Its name doesn’t matter to Django; you can rename it to anything
you like.

	manage.py: A command-line utility that lets you interact with this
Django project in various ways. You can read all the details about
manage.py in /ref/django-admin.

	The inner mysite/ directory is the actual Python package for your
project. Its name is the Python package name you’ll need to use to import
anything inside it (e.g. mysite.urls).

	mysite/__init__.py: An empty file that tells Python that this
directory should be considered a Python package. If you’re a Python beginner,
read more about packages in the official Python docs.

	mysite/settings.py: Settings/configuration for this Django
project. /topics/settings will tell you all about how settings
work.

	mysite/urls.py: The URL declarations for this Django project; a
“table of contents” of your Django-powered site. You can read more about
URLs in /topics/http/urls.

	mysite/wsgi.py: An entry-point for WSGI-compatible web servers to
serve your project. See /howto/deployment/wsgi/index for more details.

The development server

Let’s verify your Django project works. Change into the outer mysite directory, if
you haven’t already, and run the following commands:

You’ll see the following output on the command line:

Performing system checks…

System check identified no issues (0 silenced).

You have unapplied migrations; your app may not work properly until they are applied.
Run 'python manage.py migrate' to apply them.

Dec 30, 2018 - 15:50:53
Django version latest, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Note

Ignore the warning about unapplied database migrations for now; we’ll deal
with the database shortly.

You’ve started the Django development server, a lightweight Web server written
purely in Python. We’ve included this with Django so you can develop things
rapidly, without having to deal with configuring a production server – such as
Apache – until you’re ready for production.

Now’s a good time to note: don’t use this server in anything resembling a
production environment. It’s intended only for use while developing. (We’re in
the business of making Web frameworks, not Web servers.)

Now that the server’s running, visit http://127.0.0.1:8000/ with your Web
browser. You’ll see a “Congratulations!” page, with a rocket taking off.
It worked!

Changing the port

By default, the :djadmin:`runserver` command starts the development server
on the internal IP at port 8000.

If you want to change the server’s port, pass
it as a command-line argument. For instance, this command starts the server
on port 8080:

If you want to change the server’s IP, pass it along with the port. For
example, to listen on all available public IPs (which is useful if you are
running Vagrant or want to show off your work on other computers on the
network), use:

0 is a shortcut for 0.0.0.0. Full docs for the development server
can be found in the :djadmin:`runserver` reference.

Automatic reloading of :djadmin:`runserver`

The development server automatically reloads Python code for each request
as needed. You don’t need to restart the server for code changes to take
effect. However, some actions like adding files don’t trigger a restart,
so you’ll have to restart the server in these cases.

Creating the Polls app

Now that your environment – a “project” – is set up, you’re set to start
doing work.

Each application you write in Django consists of a Python package that follows
a certain convention. Django comes with a utility that automatically generates
the basic directory structure of an app, so you can focus on writing code
rather than creating directories.

Projects vs. apps

What’s the difference between a project and an app? An app is a Web
application that does something – e.g., a Weblog system, a database of
public records or a simple poll app. A project is a collection of
configuration and apps for a particular website. A project can contain
multiple apps. An app can be in multiple projects.

Your apps can live anywhere on your Python path. In
this tutorial, we’ll create our poll app right next to your manage.py
file so that it can be imported as its own top-level module, rather than a
submodule of mysite.

To create your app, make sure you’re in the same directory as manage.py
and type this command:

That’ll create a directory polls, which is laid out like this:

polls/
 __init__.py
 admin.py
 apps.py
 migrations/
 __init__.py
 models.py
 tests.py
 views.py

This directory structure will house the poll application.

Write your first view

Let’s write the first view. Open the file polls/views.py
and put the following Python code in it:

polls/views.py

from django.http import HttpResponse

def index(request):
 return HttpResponse("Hello, world. You're at the polls index.")

This is the simplest view possible in Django. To call the view, we need to map
it to a URL - and for this we need a URLconf.

To create a URLconf in the polls directory, create a file called urls.py.
Your app directory should now look like:

polls/
 __init__.py
 admin.py
 apps.py
 migrations/
 __init__.py
 models.py
 tests.py
 urls.py
 views.py

In the polls/urls.py file include the following code:

polls/urls.py

from django.urls import path

from . import views

urlpatterns = [
 path('', views.index, name='index'),
]

The next step is to point the root URLconf at the polls.urls module. In
mysite/urls.py, add an import for django.urls.include and insert an
include() in the urlpatterns list, so you have:

mysite/urls.py

from django.contrib import admin
from django.urls import include, path

urlpatterns = [
 path('polls/', include('polls.urls')),
 path('admin/', admin.site.urls),
]

The include() function allows referencing other URLconfs.
Whenever Django encounters include(), it chops off whatever
part of the URL matched up to that point and sends the remaining string to the
included URLconf for further processing.

The idea behind include() is to make it easy to
plug-and-play URLs. Since polls are in their own URLconf
(polls/urls.py), they can be placed under “/polls/”, or under
“/fun_polls/”, or under “/content/polls/”, or any other path root, and the
app will still work.

When to use include()

You should always use include() when you include other URL patterns.
admin.site.urls is the only exception to this.

You have now wired an index view into the URLconf. Lets verify it’s
working, run the following command:

Go to http://localhost:8000/polls/ in your browser, and you should see the
text “Hello, world. You’re at the polls index.”, which you defined in the
index view.

Page not found?

If you get an error page here, check that you’re going to
http://localhost:8000/polls/ and not http://localhost:8000/.

The path() function is passed four arguments, two required:
route and view, and two optional: kwargs, and name.
At this point, it’s worth reviewing what these arguments are for.

path() argument: route

route is a string that contains a URL pattern. When processing a request,
Django starts at the first pattern in urlpatterns and makes its way down
the list, comparing the requested URL against each pattern until it finds one
that matches.

Patterns don’t search GET and POST parameters, or the domain name. For example,
in a request to https://www.example.com/myapp/, the URLconf will look for
myapp/. In a request to https://www.example.com/myapp/?page=3, the
URLconf will also look for myapp/.

path() argument: view

When Django finds a matching pattern, it calls the specified view function with
an HttpRequest object as the first argument and any
“captured” values from the route as keyword arguments. We’ll give an example
of this in a bit.

path() argument: kwargs

Arbitrary keyword arguments can be passed in a dictionary to the target view. We
aren’t going to use this feature of Django in the tutorial.

path() argument: name

Naming your URL lets you refer to it unambiguously from elsewhere in Django,
especially from within templates. This powerful feature allows you to make
global changes to the URL patterns of your project while only touching a single
file.

When you’re comfortable with the basic request and response flow, read
part 2 of this tutorial to start working with the
database.

Writing your first Django app, part 2

Warning

原完整網頁參照官網 https://docs.djangoproject.com/en/2.1/intro/tutorial02/
，以下是只是個人的心得筆記。(by Mark陳炳陵）

This tutorial begins where Tutorial 1 left off.
We’ll setup the database, create your first model, and get a quick introduction
to Django’s automatically-generated admin site.

Note

每段開始總是會先回顧一下上一講的主題，同時有快速查看的連結。(by Mark陳炳陵）

Database setup

Note

數據庫的設定。
實做裡，我用做預設的SQLite3, PostGres 和 Oracle, 其中 Oracle 的配置很折騰。(by Mark陳炳陵）

Now, open up mysite/settings.py. It’s a normal Python module with
module-level variables representing Django settings.

By default, the configuration uses SQLite. If you’re new to databases, or
you’re just interested in trying Django, this is the easiest choice. SQLite is
included in Python, so you won’t need to install anything else to support your
database. When starting your first real project, however, you may want to use a
more scalable database like PostgreSQL, to avoid database-switching headaches
down the road.

If you wish to use another database, install the appropriate database
bindings and change the following keys in the
:setting:`DATABASES` 'default' item to match your database connection
settings:

	:setting:`ENGINE <DATABASE-ENGINE>` – Either
'django.db.backends.sqlite3',
'django.db.backends.postgresql',
'django.db.backends.mysql', or
'django.db.backends.oracle'. Other backends are also available.

	:setting:`NAME` – The name of your database. If you’re using SQLite, the
database will be a file on your computer; in that case, :setting:`NAME`
should be the full absolute path, including filename, of that file. The
default value, os.path.join(BASE_DIR, 'db.sqlite3'), will store the file
in your project directory.

If you are not using SQLite as your database, additional settings such as
:setting:`USER`, :setting:`PASSWORD`, and :setting:`HOST` must be added.
For more details, see the reference documentation for :setting:`DATABASES`.

For databases other than SQLite

If you’re using a database besides SQLite, make sure you’ve created a
database by this point. Do that with “CREATE DATABASE database_name;”
within your database’s interactive prompt.

Also make sure that the database user provided in mysite/settings.py
has “create database” privileges. This allows automatic creation of a
test database which will be needed in a later
tutorial.

If you’re using SQLite, you don’t need to create anything beforehand - the
database file will be created automatically when it is needed.

While you’re editing mysite/settings.py, set :setting:`TIME_ZONE` to
your time zone.

Also, note the :setting:`INSTALLED_APPS` setting at the top of the file. That
holds the names of all Django applications that are activated in this Django
instance. Apps can be used in multiple projects, and you can package and
distribute them for use by others in their projects.

By default, :setting:`INSTALLED_APPS` contains the following apps, all of which
come with Django:

	django.contrib.admin – The admin site. You’ll use it shortly.

	django.contrib.auth – An authentication system.

	django.contrib.contenttypes – A framework for content types.

	django.contrib.sessions – A session framework.

	django.contrib.messages – A messaging framework.

	django.contrib.staticfiles – A framework for managing
static files.

These applications are included by default as a convenience for the common case.

Some of these applications make use of at least one database table, though,
so we need to create the tables in the database before we can use them. To do
that, run the following command:

The :djadmin:`migrate` command looks at the :setting:`INSTALLED_APPS` setting
and creates any necessary database tables according to the database settings
in your mysite/settings.py file and the database migrations shipped
with the app (we’ll cover those later). You’ll see a message for each
migration it applies. If you’re interested, run the command-line client for your
database and type \dt (PostgreSQL), SHOW TABLES; (MySQL), .schema
(SQLite), or SELECT TABLE_NAME FROM USER_TABLES; (Oracle) to display the
tables Django created.

For the minimalists

Like we said above, the default applications are included for the common
case, but not everybody needs them. If you don’t need any or all of them,
feel free to comment-out or delete the appropriate line(s) from
:setting:`INSTALLED_APPS` before running :djadmin:`migrate`. The
:djadmin:`migrate` command will only run migrations for apps in
:setting:`INSTALLED_APPS`.

Creating models

Note

數據模型。
在 views.py 和 admin.py 常常要再寫在這裡的定義，一直想做一個自動生成常用的語句可以直接copy/paste，例如 list_display = ([‘ordercode’,’code’,’useraddr1’,’useraddr2’,’useraddr3’,’note’,])
。(by Mark陳炳陵）

Now we’ll define your models – essentially, your database layout, with
additional metadata.

Philosophy

A model is the single, definitive source of truth about your data. It contains
the essential fields and behaviors of the data you’re storing. Django follows
the DRY Principle. The goal is to define your data model in one
place and automatically derive things from it.

This includes the migrations - unlike in Ruby On Rails, for example, migrations
are entirely derived from your models file, and are essentially just a
history that Django can roll through to update your database schema to
match your current models.

In our simple poll app, we’ll create two models: Question and Choice.
A Question has a question and a publication date. A Choice has two
fields: the text of the choice and a vote tally. Each Choice is associated
with a Question.

These concepts are represented by simple Python classes. Edit the
polls/models.py file so it looks like this:

polls/models.py

from django.db import models

class Question(models.Model):
 question_text = models.CharField(max_length=200)
 pub_date = models.DateTimeField('date published')

class Choice(models.Model):
 question = models.ForeignKey(Question, on_delete=models.CASCADE)
 choice_text = models.CharField(max_length=200)
 votes = models.IntegerField(default=0)

Note

這個範例最亮點是

question = models.ForeignKey(Question, on_delete=models.CASCADE)

根據個人實做驗証，可以在 Choice 　有另一個

member = models.ForeignKey(Member, on_delete=models.CASCADE)

要注意的是，要有 on_delete=models.CASCADE (by Mark陳炳陵）

The code is straightforward. Each model is represented by a class that
subclasses django.db.models.Model. Each model has a number of class
variables, each of which represents a database field in the model.

Each field is represented by an instance of a Field
class – e.g., CharField for character fields and
DateTimeField for datetimes. This tells Django what
type of data each field holds.

The name of each Field instance (e.g.
question_text or pub_date) is the field’s name, in machine-friendly
format. You’ll use this value in your Python code, and your database will use
it as the column name.

You can use an optional first positional argument to a
Field to designate a human-readable name. That’s used
in a couple of introspective parts of Django, and it doubles as documentation.
If this field isn’t provided, Django will use the machine-readable name. In this
example, we’ve only defined a human-readable name for Question.pub_date.
For all other fields in this model, the field’s machine-readable name will
suffice as its human-readable name.

Some Field classes have required arguments.
CharField, for example, requires that you give it a
max_length. That’s used not only in the
database schema, but in validation, as we’ll soon see.

A Field can also have various optional arguments; in
this case, we’ve set the default value of
votes to 0.

Finally, note a relationship is defined, using
ForeignKey. That tells Django each Choice is
related to a single Question. Django supports all the common database
relationships: many-to-one, many-to-many, and one-to-one.

Activating models

That small bit of model code gives Django a lot of information. With it, Django
is able to:

	Create a database schema (CREATE TABLE statements) for this app.

	Create a Python database-access API for accessing Question and Choice objects.

But first we need to tell our project that the polls app is installed.

Philosophy

Django apps are “pluggable”: You can use an app in multiple projects, and
you can distribute apps, because they don’t have to be tied to a given
Django installation.

To include the app in our project, we need to add a reference to its
configuration class in the :setting:`INSTALLED_APPS` setting. The
PollsConfig class is in the polls/apps.py file, so its dotted path
is 'polls.apps.PollsConfig'. Edit the mysite/settings.py file and
add that dotted path to the :setting:`INSTALLED_APPS` setting. It’ll look like
this:

mysite/settings.py

INSTALLED_APPS = [
 'polls.apps.PollsConfig',
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
]

Warning

這裡的 ‘polls.apps.PollsConfig’, 個人偏好還是使用簡易 ‘polls’。(by Mark陳炳陵）

Now Django knows to include the polls app. Let’s run another command:

You should see something similar to the following:

Migrations for 'polls':
 polls/migrations/0001_initial.py:
 - Create model Choice
 - Create model Question
 - Add field question to choice

By running makemigrations, you’re telling Django that you’ve made
some changes to your models (in this case, you’ve made new ones) and that
you’d like the changes to be stored as a migration.

Migrations are how Django stores changes to your models (and thus your
database schema) - they’re just files on disk. You can read the migration
for your new model if you like; it’s the file
polls/migrations/0001_initial.py. Don’t worry, you’re not expected to read
them every time Django makes one, but they’re designed to be human-editable
in case you want to manually tweak how Django changes things.

There’s a command that will run the migrations for you and manage your database
schema automatically - that’s called :djadmin:`migrate`, and we’ll come to it in a
moment - but first, let’s see what SQL that migration would run. The
:djadmin:`sqlmigrate` command takes migration names and returns their SQL:

You should see something similar to the following (we’ve reformatted it for
readability):

BEGIN;
--
-- Create model Choice
--
CREATE TABLE "polls_choice" (
 "id" serial NOT NULL PRIMARY KEY,
 "choice_text" varchar(200) NOT NULL,
 "votes" integer NOT NULL
);
--
-- Create model Question
--
CREATE TABLE "polls_question" (
 "id" serial NOT NULL PRIMARY KEY,
 "question_text" varchar(200) NOT NULL,
 "pub_date" timestamp with time zone NOT NULL
);
--
-- Add field question to choice
--
ALTER TABLE "polls_choice" ADD COLUMN "question_id" integer NOT NULL;
ALTER TABLE "polls_choice" ALTER COLUMN "question_id" DROP DEFAULT;
CREATE INDEX "polls_choice_7aa0f6ee" ON "polls_choice" ("question_id");
ALTER TABLE "polls_choice"
 ADD CONSTRAINT "polls_choice_question_id_246c99a640fbbd72_fk_polls_question_id"
 FOREIGN KEY ("question_id")
 REFERENCES "polls_question" ("id")
 DEFERRABLE INITIALLY DEFERRED;

COMMIT;

Note the following:

	The exact output will vary depending on the database you are using. The
example above is generated for PostgreSQL.

	Table names are automatically generated by combining the name of the app
(polls) and the lowercase name of the model – question and
choice. (You can override this behavior.)

	Primary keys (IDs) are added automatically. (You can override this, too.)

	By convention, Django appends "_id" to the foreign key field name.
(Yes, you can override this, as well.)

	The foreign key relationship is made explicit by a FOREIGN KEY
constraint. Don’t worry about the DEFERRABLE parts; that’s just telling
PostgreSQL to not enforce the foreign key until the end of the transaction.

	It’s tailored to the database you’re using, so database-specific field types
such as auto_increment (MySQL), serial (PostgreSQL), or integer
primary key autoincrement (SQLite) are handled for you automatically. Same
goes for the quoting of field names – e.g., using double quotes or
single quotes.

	The :djadmin:`sqlmigrate` command doesn’t actually run the migration on your
database - it just prints it to the screen so that you can see what SQL
Django thinks is required. It’s useful for checking what Django is going to
do or if you have database administrators who require SQL scripts for
changes.

If you’re interested, you can also run
:djadmin:`python manage.py check <check>`; this checks for any problems in
your project without making migrations or touching the database.

Now, run :djadmin:`migrate` again to create those model tables in your database:

The :djadmin:`migrate` command takes all the migrations that haven’t been
applied (Django tracks which ones are applied using a special table in your
database called django_migrations) and runs them against your database -
essentially, synchronizing the changes you made to your models with the schema
in the database.

Migrations are very powerful and let you change your models over time, as you
develop your project, without the need to delete your database or tables and
make new ones - it specializes in upgrading your database live, without
losing data. We’ll cover them in more depth in a later part of the tutorial,
but for now, remember the three-step guide to making model changes:

	Change your models (in models.py).

	Run :djadmin:`python manage.py makemigrations <makemigrations>` to create
migrations for those changes

	Run :djadmin:`python manage.py migrate <migrate>` to apply those changes to
the database.

The reason that there are separate commands to make and apply migrations is
because you’ll commit migrations to your version control system and ship them
with your app; they not only make your development easier, they’re also
usable by other developers and in production.

Read the django-admin documentation for full
information on what the manage.py utility can do.

Playing with the API

Now, let’s hop into the interactive Python shell and play around with the free
API Django gives you. To invoke the Python shell, use this command:

We’re using this instead of simply typing “python”, because manage.py
sets the DJANGO_SETTINGS_MODULE environment variable, which gives Django
the Python import path to your mysite/settings.py file.

Once you’re in the shell, explore the database API:

>>> from polls.models import Choice, Question # Import the model classes we just wrote.

No questions are in the system yet.
>>> Question.objects.all()
<QuerySet []>

Create a new Question.
Support for time zones is enabled in the default settings file, so
Django expects a datetime with tzinfo for pub_date. Use timezone.now()
instead of datetime.datetime.now() and it will do the right thing.
>>> from django.utils import timezone
>>> q = Question(question_text="What's new?", pub_date=timezone.now())

Save the object into the database. You have to call save() explicitly.
>>> q.save()

Now it has an ID.
>>> q.id
1

Access model field values via Python attributes.
>>> q.question_text
"What's new?"
>>> q.pub_date
datetime.datetime(2012, 2, 26, 13, 0, 0, 775217, tzinfo=<UTC>)

Change values by changing the attributes, then calling save().
>>> q.question_text = "What's up?"
>>> q.save()

objects.all() displays all the questions in the database.
>>> Question.objects.all()
<QuerySet [<Question: Question object (1)>]>

Wait a minute. <Question: Question object (1)> isn’t a helpful
representation of this object. Let’s fix that by editing the Question model
(in the polls/models.py file) and adding a
__str__() method to both Question and
Choice:

polls/models.py

from django.db import models

class Question(models.Model):
 # ...
 def __str__(self):
 return self.question_text

class Choice(models.Model):
 # ...
 def __str__(self):
 return self.choice_text

It’s important to add __str__() methods to your
models, not only for your own convenience when dealing with the interactive
prompt, but also because objects’ representations are used throughout Django’s
automatically-generated admin.

Note these are normal Python methods. Let’s add a custom method, just for
demonstration:

polls/models.py

import datetime

from django.db import models
from django.utils import timezone

class Question(models.Model):
 # ...
 def was_published_recently(self):
 return self.pub_date >= timezone.now() - datetime.timedelta(days=1)

Note the addition of import datetime and from django.utils import
timezone, to reference Python’s standard datetime module and Django’s
time-zone-related utilities in django.utils.timezone, respectively. If
you aren’t familiar with time zone handling in Python, you can learn more in
the time zone support docs.

Save these changes and start a new Python interactive shell by running
python manage.py shell again:

>>> from polls.models import Choice, Question

Make sure our __str__() addition worked.
>>> Question.objects.all()
<QuerySet [<Question: What's up?>]>

Django provides a rich database lookup API that's entirely driven by
keyword arguments.
>>> Question.objects.filter(id=1)
<QuerySet [<Question: What's up?>]>
>>> Question.objects.filter(question_text__startswith='What')
<QuerySet [<Question: What's up?>]>

Get the question that was published this year.
>>> from django.utils import timezone
>>> current_year = timezone.now().year
>>> Question.objects.get(pub_date__year=current_year)
<Question: What's up?>

Request an ID that doesn't exist, this will raise an exception.
>>> Question.objects.get(id=2)
Traceback (most recent call last):
 ...
DoesNotExist: Question matching query does not exist.

Lookup by a primary key is the most common case, so Django provides a
shortcut for primary-key exact lookups.
The following is identical to Question.objects.get(id=1).
>>> Question.objects.get(pk=1)
<Question: What's up?>

Make sure our custom method worked.
>>> q = Question.objects.get(pk=1)
>>> q.was_published_recently()
True

Give the Question a couple of Choices. The create call constructs a new
Choice object, does the INSERT statement, adds the choice to the set
of available choices and returns the new Choice object. Django creates
a set to hold the "other side" of a ForeignKey relation
(e.g. a question's choice) which can be accessed via the API.
>>> q = Question.objects.get(pk=1)

Display any choices from the related object set -- none so far.
>>> q.choice_set.all()
<QuerySet []>

Create three choices.
>>> q.choice_set.create(choice_text='Not much', votes=0)
<Choice: Not much>
>>> q.choice_set.create(choice_text='The sky', votes=0)
<Choice: The sky>
>>> c = q.choice_set.create(choice_text='Just hacking again', votes=0)

Choice objects have API access to their related Question objects.
>>> c.question
<Question: What's up?>

And vice versa: Question objects get access to Choice objects.
>>> q.choice_set.all()
<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>
>>> q.choice_set.count()
3

The API automatically follows relationships as far as you need.
Use double underscores to separate relationships.
This works as many levels deep as you want; there's no limit.
Find all Choices for any question whose pub_date is in this year
(reusing the 'current_year' variable we created above).
>>> Choice.objects.filter(question__pub_date__year=current_year)
<QuerySet [<Choice: Not much>, <Choice: The sky>, <Choice: Just hacking again>]>

Let's delete one of the choices. Use delete() for that.
>>> c = q.choice_set.filter(choice_text__startswith='Just hacking')
>>> c.delete()

For more information on model relations, see Accessing related objects. For more on how to use double underscores to perform
field lookups via the API, see Field lookups. For
full details on the database API, see our Database API reference.

Introducing the Django Admin

Philosophy

Generating admin sites for your staff or clients to add, change, and delete
content is tedious work that doesn’t require much creativity. For that
reason, Django entirely automates creation of admin interfaces for models.

Django was written in a newsroom environment, with a very clear separation
between “content publishers” and the “public” site. Site managers use the
system to add news stories, events, sports scores, etc., and that content is
displayed on the public site. Django solves the problem of creating a
unified interface for site administrators to edit content.

The admin isn’t intended to be used by site visitors. It’s for site
managers.

Creating an admin user

First we’ll need to create a user who can login to the admin site. Run the
following command:

Enter your desired username and press enter.

Username: admin

You will then be prompted for your desired email address:

Email address: admin@example.com

The final step is to enter your password. You will be asked to enter your
password twice, the second time as a confirmation of the first.

Password: **********
Password (again): *********
Superuser created successfully.

Start the development server

The Django admin site is activated by default. Let’s start the development
server and explore it.

If the server is not running start it like so:

Now, open a Web browser and go to “/admin/” on your local domain – e.g.,
http://127.0.0.1:8000/admin/. You should see the admin’s login screen:

[image: Django admin login screen]
Since translation is turned on by default,
the login screen may be displayed in your own language, depending on your
browser’s settings and if Django has a translation for this language.

Enter the admin site

Now, try logging in with the superuser account you created in the previous step.
You should see the Django admin index page:

[image: Django admin index page]
You should see a few types of editable content: groups and users. They are
provided by django.contrib.auth, the authentication framework shipped
by Django.

Make the poll app modifiable in the admin

But where’s our poll app? It’s not displayed on the admin index page.

Just one thing to do: we need to tell the admin that Question
objects have an admin interface. To do this, open the polls/admin.py
file, and edit it to look like this:

polls/admin.py

from django.contrib import admin

from .models import Question

admin.site.register(Question)

Explore the free admin functionality

Now that we’ve registered Question, Django knows that it should be displayed on
the admin index page:

[image: Django admin index page, now with polls displayed]
Click “Questions”. Now you’re at the “change list” page for questions. This page
displays all the questions in the database and lets you choose one to change it.
There’s the “What’s up?” question we created earlier:

[image: Polls change list page]
Click the “What’s up?” question to edit it:

[image: Editing form for question object]
Things to note here:

	The form is automatically generated from the Question model.

	The different model field types (DateTimeField,
CharField) correspond to the appropriate HTML
input widget. Each type of field knows how to display itself in the Django
admin.

	Each DateTimeField gets free JavaScript
shortcuts. Dates get a “Today” shortcut and calendar popup, and times get
a “Now” shortcut and a convenient popup that lists commonly entered times.

The bottom part of the page gives you a couple of options:

	Save – Saves changes and returns to the change-list page for this type of
object.

	Save and continue editing – Saves changes and reloads the admin page for
this object.

	Save and add another – Saves changes and loads a new, blank form for this
type of object.

	Delete – Displays a delete confirmation page.

If the value of “Date published” doesn’t match the time when you created the
question in Tutorial 1, it probably
means you forgot to set the correct value for the :setting:`TIME_ZONE` setting.
Change it, reload the page and check that the correct value appears.

Change the “Date published” by clicking the “Today” and “Now” shortcuts. Then
click “Save and continue editing.” Then click “History” in the upper right.
You’ll see a page listing all changes made to this object via the Django admin,
with the timestamp and username of the person who made the change:

[image: History page for question object]
When you’re comfortable with the models API and have familiarized yourself with
the admin site, read part 3 of this tutorial to learn
about how to add more views to our polls app.

Writing your first Django app, part 3

Warning

原完整網頁參照官網 https://docs.djangoproject.com/en/2.1/intro/tutorial03/
，以下是只是個人的心得筆記。(by Mark陳炳陵）

This tutorial begins where Tutorial 2 left off. We’re
continuing the Web-poll application and will focus on creating the public
interface – “views.”

Overview

A view is a “type” of Web page in your Django application that generally serves
a specific function and has a specific template. For example, in a blog
application, you might have the following views:

	Blog homepage – displays the latest few entries.

	Entry “detail” page – permalink page for a single entry.

	Year-based archive page – displays all months with entries in the
given year.

	Month-based archive page – displays all days with entries in the
given month.

	Day-based archive page – displays all entries in the given day.

	Comment action – handles posting comments to a given entry.

In our poll application, we’ll have the following four views:

	Question “index” page – displays the latest few questions.

	Question “detail” page – displays a question text, with no results but
with a form to vote.

	Question “results” page – displays results for a particular question.

	Vote action – handles voting for a particular choice in a particular
question.

In Django, web pages and other content are delivered by views. Each view is
represented by a simple Python function (or method, in the case of class-based
views). Django will choose a view by examining the URL that’s requested (to be
precise, the part of the URL after the domain name).

Now in your time on the web you may have come across such beauties as
“ME2/Sites/dirmod.asp?sid=&type=gen&mod=Core+Pages&gid=A6CD4967199A42D9B65B1B”.
You will be pleased to know that Django allows us much more elegant
URL patterns than that.

A URL pattern is simply the general form of a URL - for example:
/newsarchive/<year>/<month>/.

To get from a URL to a view, Django uses what are known as ‘URLconfs’. A
URLconf maps URL patterns to views.

This tutorial provides basic instruction in the use of URLconfs, and you can
refer to /topics/http/urls for more information.

Writing more views

Note

對於做網頁來說，這一小段還不實用，但說明了原理，後續應該是在這基礎封裝的。(by Mark陳炳陵）

Now let’s add a few more views to polls/views.py. These views are
slightly different, because they take an argument:

polls/views.py

def detail(request, question_id):
 return HttpResponse("You're looking at question %s." % question_id)

def results(request, question_id):
 response = "You're looking at the results of question %s."
 return HttpResponse(response % question_id)

def vote(request, question_id):
 return HttpResponse("You're voting on question %s." % question_id)

Wire these new views into the polls.urls module by adding the following
path() calls:

polls/urls.py

from django.urls import path

from . import views

urlpatterns = [
 # ex: /polls/
 path('', views.index, name='index'),
 # ex: /polls/5/
 path('<int:question_id>/', views.detail, name='detail'),
 # ex: /polls/5/results/
 path('<int:question_id>/results/', views.results, name='results'),
 # ex: /polls/5/vote/
 path('<int:question_id>/vote/', views.vote, name='vote'),
]

Take a look in your browser, at “/polls/34/”. It’ll run the detail()
method and display whatever ID you provide in the URL. Try
“/polls/34/results/” and “/polls/34/vote/” too – these will display the
placeholder results and voting pages.

When somebody requests a page from your website – say, “/polls/34/”, Django
will load the mysite.urls Python module because it’s pointed to by the
:setting:`ROOT_URLCONF` setting. It finds the variable named urlpatterns
and traverses the patterns in order. After finding the match at 'polls/',
it strips off the matching text ("polls/") and sends the remaining text –
"34/" – to the ‘polls.urls’ URLconf for further processing. There it
matches '<int:question_id>/', resulting in a call to the detail() view
like so:

detail(request=<HttpRequest object>, question_id=34)

The question_id=34 part comes from <int:question_id>. Using angle
brackets “captures” part of the URL and sends it as a keyword argument to the
view function. The :question_id> part of the string defines the name that
will be used to identify the matched pattern, and the <int: part is a
converter that determines what patterns should match this part of the URL path.

There’s no need to add URL cruft such as .html – unless you want to, in
which case you can do something like this:

path('polls/latest.html', views.index),

But, don’t do that. It’s silly.

Write views that actually do something

Warning

這裡又進了一步，但仍然還不是慣用的方式。(by Mark陳炳陵）

Each view is responsible for doing one of two things: returning an
HttpResponse object containing the content for the
requested page, or raising an exception such as Http404. The
rest is up to you.

Your view can read records from a database, or not. It can use a template
system such as Django’s – or a third-party Python template system – or not.
It can generate a PDF file, output XML, create a ZIP file on the fly, anything
you want, using whatever Python libraries you want.

All Django wants is that HttpResponse. Or an exception.

Because it’s convenient, let’s use Django’s own database API, which we covered
in Tutorial 2. Here’s one stab at a new index()
view, which displays the latest 5 poll questions in the system, separated by
commas, according to publication date:

polls/views.py

from django.http import HttpResponse

from .models import Question

def index(request):
 latest_question_list = Question.objects.order_by('-pub_date')[:5]
 output = ', '.join([q.question_text for q in latest_question_list])
 return HttpResponse(output)

Leave the rest of the views (detail, results, vote) unchanged

There’s a problem here, though: the page’s design is hard-coded in the view. If
you want to change the way the page looks, you’ll have to edit this Python code.
So let’s use Django’s template system to separate the design from Python by
creating a template that the view can use.

First, create a directory called templates in your polls directory.
Django will look for templates in there.

Your project’s :setting:`TEMPLATES` setting describes how Django will load and
render templates. The default settings file configures a DjangoTemplates
backend whose :setting:`APP_DIRS <TEMPLATES-APP_DIRS>` option is set to
True. By convention DjangoTemplates looks for a “templates”
subdirectory in each of the :setting:`INSTALLED_APPS`.

Within the templates directory you have just created, create another
directory called polls, and within that create a file called
index.html. In other words, your template should be at
polls/templates/polls/index.html. Because of how the app_directories
template loader works as described above, you can refer to this template within
Django simply as polls/index.html.

Template namespacing

Now we might be able to get away with putting our templates directly in
polls/templates (rather than creating another polls subdirectory),
but it would actually be a bad idea. Django will choose the first template
it finds whose name matches, and if you had a template with the same name
in a different application, Django would be unable to distinguish between
them. We need to be able to point Django at the right one, and the easiest
way to ensure this is by namespacing them. That is, by putting those
templates inside another directory named for the application itself.

Put the following code in that template:

polls/templates/polls/index.html

{% if latest_question_list %}

 {% for question in latest_question_list %}
 {{ question.question_text }}
 {% endfor %}

{% else %}
 <p>No polls are available.</p>
{% endif %}

Now let’s update our index view in polls/views.py to use the template:

polls/views.py

from django.http import HttpResponse
from django.template import loader

from .models import Question

def index(request):
 latest_question_list = Question.objects.order_by('-pub_date')[:5]
 template = loader.get_template('polls/index.html')
 context = {
 'latest_question_list': latest_question_list,
 }
 return HttpResponse(template.render(context, request))

That code loads the template called polls/index.html and passes it a
context. The context is a dictionary mapping template variable names to Python
objects.

Load the page by pointing your browser at “/polls/”, and you should see a
bulleted-list containing the “What’s up” question from Tutorial 2. The link points to the question’s detail page.

A shortcut: render()

Note

前面兩種是進化的過程，這一種常用。(by Mark陳炳陵）

It’s a very common idiom to load a template, fill a context and return an
HttpResponse object with the result of the rendered
template. Django provides a shortcut. Here’s the full index() view,
rewritten:

polls/views.py

from django.shortcuts import render

from .models import Question

def index(request):
 latest_question_list = Question.objects.order_by('-pub_date')[:5]
 context = {'latest_question_list': latest_question_list}
 return render(request, 'polls/index.html', context)

Note that once we’ve done this in all these views, we no longer need to import
loader and HttpResponse (you’ll
want to keep HttpResponse if you still have the stub methods for detail,
results, and vote).

The render() function takes the request object as its
first argument, a template name as its second argument and a dictionary as its
optional third argument. It returns an HttpResponse
object of the given template rendered with the given context.

Raising a 404 error

Now, let’s tackle the question detail view – the page that displays the question text
for a given poll. Here’s the view:

polls/views.py

from django.http import Http404
from django.shortcuts import render

from .models import Question
...
def detail(request, question_id):
 try:
 question = Question.objects.get(pk=question_id)
 except Question.DoesNotExist:
 raise Http404("Question does not exist")
 return render(request, 'polls/detail.html', {'question': question})

The new concept here: The view raises the Http404 exception
if a question with the requested ID doesn’t exist.

We’ll discuss what you could put in that polls/detail.html template a bit
later, but if you’d like to quickly get the above example working, a file
containing just:

polls/templates/polls/detail.html

{{ question }}

will get you started for now.

A shortcut: get_object_or_404()

It’s a very common idiom to use get()
and raise Http404 if the object doesn’t exist. Django
provides a shortcut. Here’s the detail() view, rewritten:

polls/views.py

from django.shortcuts import get_object_or_404, render

from .models import Question
...
def detail(request, question_id):
 question = get_object_or_404(Question, pk=question_id)
 return render(request, 'polls/detail.html', {'question': question})

The get_object_or_404() function takes a Django model
as its first argument and an arbitrary number of keyword arguments, which it
passes to the get() function of the
model’s manager. It raises Http404 if the object doesn’t
exist.

Philosophy

Why do we use a helper function get_object_or_404()
instead of automatically catching the
ObjectDoesNotExist exceptions at a higher
level, or having the model API raise Http404 instead of
ObjectDoesNotExist?

Because that would couple the model layer to the view layer. One of the
foremost design goals of Django is to maintain loose coupling. Some
controlled coupling is introduced in the django.shortcuts module.

There’s also a get_list_or_404() function, which works
just as get_object_or_404() – except using
filter() instead of
get(). It raises
Http404 if the list is empty.

Use the template system

Back to the detail() view for our poll application. Given the context
variable question, here’s what the polls/detail.html template might look
like:

polls/templates/polls/detail.html

<h1>{{ question.question_text }}</h1>

{% for choice in question.choice_set.all %}
 {{ choice.choice_text }}
{% endfor %}

The template system uses dot-lookup syntax to access variable attributes. In
the example of {{ question.question_text }}, first Django does a dictionary lookup
on the object question. Failing that, it tries an attribute lookup – which
works, in this case. If attribute lookup had failed, it would’ve tried a
list-index lookup.

Method-calling happens in the :ttag:`{% for %}<for>` loop:
question.choice_set.all is interpreted as the Python code
question.choice_set.all(), which returns an iterable of Choice objects and is
suitable for use in the :ttag:`{% for %}<for>` tag.

See the template guide for more about templates.

Removing hardcoded URLs in templates

Remember, when we wrote the link to a question in the polls/index.html
template, the link was partially hardcoded like this:

{{ question.question_text }}

The problem with this hardcoded, tightly-coupled approach is that it becomes
challenging to change URLs on projects with a lot of templates. However, since
you defined the name argument in the path() functions in
the polls.urls module, you can remove a reliance on specific URL paths
defined in your url configurations by using the {% url %} template tag:

{{ question.question_text }}

The way this works is by looking up the URL definition as specified in the
polls.urls module. You can see exactly where the URL name of ‘detail’ is
defined below:

...
the 'name' value as called by the {% url %} template tag
path('<int:question_id>/', views.detail, name='detail'),
...

If you want to change the URL of the polls detail view to something else,
perhaps to something like polls/specifics/12/ instead of doing it in the
template (or templates) you would change it in polls/urls.py:

...
added the word 'specifics'
path('specifics/<int:question_id>/', views.detail, name='detail'),
...

Namespacing URL names

The tutorial project has just one app, polls. In real Django projects,
there might be five, ten, twenty apps or more. How does Django differentiate
the URL names between them? For example, the polls app has a detail
view, and so might an app on the same project that is for a blog. How does one
make it so that Django knows which app view to create for a url when using the
{% url %} template tag?

The answer is to add namespaces to your URLconf. In the polls/urls.py
file, go ahead and add an app_name to set the application namespace:

polls/urls.py

from django.urls import path

from . import views

app_name = 'polls'
urlpatterns = [
 path('', views.index, name='index'),
 path('<int:question_id>/', views.detail, name='detail'),
 path('<int:question_id>/results/', views.results, name='results'),
 path('<int:question_id>/vote/', views.vote, name='vote'),
]

Warning

Namespace 是一個很重要的概念，在整個 polls App 裡，應該要有個這個定量 app_name，也適用於 view 指向 template html 檔案時使用
。(by Mark陳炳陵）

Now change your polls/index.html template from:

polls/templates/polls/index.html

{{ question.question_text }}

to point at the namespaced detail view:

polls/templates/polls/index.html

{{ question.question_text }}

When you’re comfortable with writing views, read part 4 of this tutorial to learn about simple form processing and generic views.

Writing your first Django app, part 4

Warning

原完整網頁參照官網 https://docs.djangoproject.com/en/2.1/intro/tutorial04/
，以下是只是個人的心得筆記。(by Mark陳炳陵）

This tutorial begins where Tutorial 3 left off. We’re
continuing the Web-poll application and will focus on simple form processing and
cutting down our code.

Write a simple form

Warning

教程在這裡是在 detail.html 直接寫 <form action=’xxx’ method=’post’>，按 Django 的規範而言，是要寫 form class的 。(by Mark陳炳陵）

Let’s update our poll detail template (“polls/detail.html”) from the last
tutorial, so that the template contains an HTML <form> element:

polls/templates/polls/detail.html

<h1>{{ question.question_text }}</h1>

{% if error_message %}<p>{{ error_message }}</p>{% endif %}

<form action="{% url 'polls:vote' question.id %}" method="post">
{% csrf_token %}
{% for choice in question.choice_set.all %}
 <input type="radio" name="choice" id="choice{{ forloop.counter }}" value="{{ choice.id }}">
 <label for="choice{{ forloop.counter }}">{{ choice.choice_text }}</label>

{% endfor %}
<input type="submit" value="Vote">
</form>

A quick rundown:

	The above template displays a radio button for each question choice. The
value of each radio button is the associated question choice’s ID. The
name of each radio button is "choice". That means, when somebody
selects one of the radio buttons and submits the form, it’ll send the
POST data choice=# where # is the ID of the selected choice. This is the
basic concept of HTML forms.

	We set the form’s action to {% url 'polls:vote' question.id %}, and we
set method="post". Using method="post" (as opposed to
method="get") is very important, because the act of submitting this
form will alter data server-side. Whenever you create a form that alters
data server-side, use method="post". This tip isn’t specific to
Django; it’s just good Web development practice.

	forloop.counter indicates how many times the :ttag:`for` tag has gone
through its loop

	Since we’re creating a POST form (which can have the effect of modifying
data), we need to worry about Cross Site Request Forgeries.
Thankfully, you don’t have to worry too hard, because Django comes with
a very easy-to-use system for protecting against it. In short, all POST
forms that are targeted at internal URLs should use the
:ttag:`{% csrf_token %}<csrf_token>` template tag.

Now, let’s create a Django view that handles the submitted data and does
something with it. Remember, in Tutorial 3, we
created a URLconf for the polls application that includes this line:

polls/urls.py

path('<int:question_id>/vote/', views.vote, name='vote'),

We also created a dummy implementation of the vote() function. Let’s
create a real version. Add the following to polls/views.py:

polls/views.py

from django.http import HttpResponse, HttpResponseRedirect
from django.shortcuts import get_object_or_404, render
from django.urls import reverse

from .models import Choice, Question
...
def vote(request, question_id):
 question = get_object_or_404(Question, pk=question_id)
 try:
 selected_choice = question.choice_set.get(pk=request.POST['choice'])
 except (KeyError, Choice.DoesNotExist):
 # Redisplay the question voting form.
 return render(request, 'polls/detail.html', {
 'question': question,
 'error_message': "You didn't select a choice.",
 })
 else:
 selected_choice.votes += 1
 selected_choice.save()
 # Always return an HttpResponseRedirect after successfully dealing
 # with POST data. This prevents data from being posted twice if a
 # user hits the Back button.
 return HttpResponseRedirect(reverse('polls:results', args=(question.id,)))

Warning

教程在這裡是相對比較難的，由於 form 的寫法不規範，沒有能夠善用 Django 既有的框架，考慮做個規範的範例 。人的學習受到先入為主的影響，傳統上我是習慣以低中高進行，現代我可能偏向直接教高級的，在編程而言是指封裝比較完善的，先能作業，再求往下理解。(by Mark陳炳陵）

This code includes a few things we haven’t covered yet in this tutorial:

	request.POST is a dictionary-like
object that lets you access submitted data by key name. In this case,
request.POST['choice'] returns the ID of the selected choice, as a
string. request.POST values are
always strings.

Note that Django also provides request.GET for accessing GET data in the same way –
but we’re explicitly using request.POST in our code, to ensure that data is only
altered via a POST call.

	request.POST['choice'] will raise KeyError if
choice wasn’t provided in POST data. The above code checks for
KeyError and redisplays the question form with an error
message if choice isn’t given.

	After incrementing the choice count, the code returns an
HttpResponseRedirect rather than a normal
HttpResponse.
HttpResponseRedirect takes a single argument: the
URL to which the user will be redirected (see the following point for how
we construct the URL in this case).

As the Python comment above points out, you should always return an
HttpResponseRedirect after successfully dealing with
POST data. This tip isn’t specific to Django; it’s just good Web
development practice.

	We are using the reverse() function in the
HttpResponseRedirect constructor in this example.
This function helps avoid having to hardcode a URL in the view function.
It is given the name of the view that we want to pass control to and the
variable portion of the URL pattern that points to that view. In this
case, using the URLconf we set up in Tutorial 3,
this reverse() call will return a string like

'/polls/3/results/'

where the 3 is the value of question.id. This redirected URL will
then call the 'results' view to display the final page.

As mentioned in Tutorial 3, request is an
HttpRequest object. For more on
HttpRequest objects, see the request and
response documentation.

After somebody votes in a question, the vote() view redirects to the results
page for the question. Let’s write that view:

polls/views.py

from django.shortcuts import get_object_or_404, render

def results(request, question_id):
 question = get_object_or_404(Question, pk=question_id)
 return render(request, 'polls/results.html', {'question': question})

This is almost exactly the same as the detail() view from Tutorial 3. The only difference is the template name. We’ll fix this
redundancy later.

Now, create a polls/results.html template:

polls/templates/polls/results.html

<h1>{{ question.question_text }}</h1>

{% for choice in question.choice_set.all %}
 {{ choice.choice_text }} -- {{ choice.votes }} vote{{ choice.votes|pluralize }}
{% endfor %}

Vote again?

Now, go to /polls/1/ in your browser and vote in the question. You should see a
results page that gets updated each time you vote. If you submit the form
without having chosen a choice, you should see the error message.

Note

The code for our vote() view does have a small problem. It first gets
the selected_choice object from the database, then computes the new
value of votes, and then saves it back to the database. If two users of
your website try to vote at exactly the same time, this might go wrong:
The same value, let’s say 42, will be retrieved for votes. Then, for
both users the new value of 43 is computed and saved, but 44 would be the
expected value.

This is called a race condition. If you are interested, you can read
avoiding-race-conditions-using-f to learn how you can solve this
issue.

Use generic views: Less code is better

The detail() (from Tutorial 3) and results()
views are very simple – and, as mentioned above, redundant. The index()
view, which displays a list of polls, is similar.

These views represent a common case of basic Web development: getting data from
the database according to a parameter passed in the URL, loading a template and
returning the rendered template. Because this is so common, Django provides a
shortcut, called the “generic views” system.

Generic views abstract common patterns to the point where you don’t even need
to write Python code to write an app.

Let’s convert our poll app to use the generic views system, so we can delete a
bunch of our own code. We’ll just have to take a few steps to make the
conversion. We will:

	Convert the URLconf.

	Delete some of the old, unneeded views.

	Introduce new views based on Django’s generic views.

Read on for details.

Why the code-shuffle?

Generally, when writing a Django app, you’ll evaluate whether generic views
are a good fit for your problem, and you’ll use them from the beginning,
rather than refactoring your code halfway through. But this tutorial
intentionally has focused on writing the views “the hard way” until now, to
focus on core concepts.

You should know basic math before you start using a calculator.

Amend URLconf

First, open the polls/urls.py URLconf and change it like so:

polls/urls.py

from django.urls import path

from . import views

app_name = 'polls'
urlpatterns = [
 path('', views.IndexView.as_view(), name='index'),
 path('<int:pk>/', views.DetailView.as_view(), name='detail'),
 path('<int:pk>/results/', views.ResultsView.as_view(), name='results'),
 path('<int:question_id>/vote/', views.vote, name='vote'),
]

Note that the name of the matched pattern in the path strings of the second and
third patterns has changed from <question_id> to <pk>.

Amend views

Next, we’re going to remove our old index, detail, and results
views and use Django’s generic views instead. To do so, open the
polls/views.py file and change it like so:

polls/views.py

from django.http import HttpResponseRedirect
from django.shortcuts import get_object_or_404, render
from django.urls import reverse
from django.views import generic

from .models import Choice, Question

class IndexView(generic.ListView):
 template_name = 'polls/index.html'
 context_object_name = 'latest_question_list'

 def get_queryset(self):
 """Return the last five published questions."""
 return Question.objects.order_by('-pub_date')[:5]

class DetailView(generic.DetailView):
 model = Question
 template_name = 'polls/detail.html'

class ResultsView(generic.DetailView):
 model = Question
 template_name = 'polls/results.html'

def vote(request, question_id):
 ... # same as above, no changes needed.

We’re using two generic views here:
ListView and
DetailView. Respectively, those
two views abstract the concepts of “display a list of objects” and
“display a detail page for a particular type of object.”

	Each generic view needs to know what model it will be acting
upon. This is provided using the model attribute.

	The DetailView generic view
expects the primary key value captured from the URL to be called
"pk", so we’ve changed question_id to pk for the generic
views.

By default, the DetailView generic
view uses a template called <app name>/<model name>_detail.html.
In our case, it would use the template "polls/question_detail.html". The
template_name attribute is used to tell Django to use a specific
template name instead of the autogenerated default template name. We
also specify the template_name for the results list view –
this ensures that the results view and the detail view have a
different appearance when rendered, even though they’re both a
DetailView behind the scenes.

Similarly, the ListView generic
view uses a default template called <app name>/<model
name>_list.html; we use template_name to tell
ListView to use our existing
"polls/index.html" template.

In previous parts of the tutorial, the templates have been provided
with a context that contains the question and latest_question_list
context variables. For DetailView the question variable is provided
automatically – since we’re using a Django model (Question), Django
is able to determine an appropriate name for the context variable.
However, for ListView, the automatically generated context variable is
question_list. To override this we provide the context_object_name
attribute, specifying that we want to use latest_question_list instead.
As an alternative approach, you could change your templates to match
the new default context variables – but it’s a lot easier to just
tell Django to use the variable you want.

Run the server, and use your new polling app based on generic views.

For full details on generic views, see the generic views documentation.

When you’re comfortable with forms and generic views, read part 5 of this
tutorial to learn about testing our polls app.

Writing your first Django app, part 5

Warning

原完整網頁參照官網 https://docs.djangoproject.com/en/2.1/intro/tutorial05/
，以下是只是個人的心得筆記。

This tutorial begins where Tutorial 4 left off.
We’ve built a Web-poll application, and we’ll now create some automated tests
for it.

Introducing automated testing

What are automated tests?

Tests are simple routines that check the operation of your code.

Testing operates at different levels. Some tests might apply to a tiny detail
(does a particular model method return values as expected?) while others
examine the overall operation of the software (does a sequence of user inputs
on the site produce the desired result?). That’s no different from the kind of
testing you did earlier in Tutorial 2, using the
:djadmin:`shell` to examine the behavior of a method, or running the
application and entering data to check how it behaves.

What’s different in automated tests is that the testing work is done for
you by the system. You create a set of tests once, and then as you make changes
to your app, you can check that your code still works as you originally
intended, without having to perform time consuming manual testing.

Why you need to create tests

So why create tests, and why now?

You may feel that you have quite enough on your plate just learning
Python/Django, and having yet another thing to learn and do may seem
overwhelming and perhaps unnecessary. After all, our polls application is
working quite happily now; going through the trouble of creating automated
tests is not going to make it work any better. If creating the polls
application is the last bit of Django programming you will ever do, then true,
you don’t need to know how to create automated tests. But, if that’s not the
case, now is an excellent time to learn.

Tests will save you time

Up to a certain point, ‘checking that it seems to work’ will be a satisfactory
test. In a more sophisticated application, you might have dozens of complex
interactions between components.

A change in any of those components could have unexpected consequences on the
application’s behavior. Checking that it still ‘seems to work’ could mean
running through your code’s functionality with twenty different variations of
your test data just to make sure you haven’t broken something - not a good use
of your time.

That’s especially true when automated tests could do this for you in seconds.
If something’s gone wrong, tests will also assist in identifying the code
that’s causing the unexpected behavior.

Sometimes it may seem a chore to tear yourself away from your productive,
creative programming work to face the unglamorous and unexciting business
of writing tests, particularly when you know your code is working properly.

However, the task of writing tests is a lot more fulfilling than spending hours
testing your application manually or trying to identify the cause of a
newly-introduced problem.

Tests don’t just identify problems, they prevent them

It’s a mistake to think of tests merely as a negative aspect of development.

Without tests, the purpose or intended behavior of an application might be
rather opaque. Even when it’s your own code, you will sometimes find yourself
poking around in it trying to find out what exactly it’s doing.

Tests change that; they light up your code from the inside, and when something
goes wrong, they focus light on the part that has gone wrong - even if you
hadn’t even realized it had gone wrong.

Tests make your code more attractive

You might have created a brilliant piece of software, but you will find that
many other developers will simply refuse to look at it because it lacks tests;
without tests, they won’t trust it. Jacob Kaplan-Moss, one of Django’s
original developers, says “Code without tests is broken by design.”

That other developers want to see tests in your software before they take it
seriously is yet another reason for you to start writing tests.

Tests help teams work together

The previous points are written from the point of view of a single developer
maintaining an application. Complex applications will be maintained by teams.
Tests guarantee that colleagues don’t inadvertently break your code (and that
you don’t break theirs without knowing). If you want to make a living as a
Django programmer, you must be good at writing tests!

Basic testing strategies

There are many ways to approach writing tests.

Some programmers follow a discipline called “test-driven development [https://en.wikipedia.org/wiki/Test-driven_development]”; they
actually write their tests before they write their code. This might seem
counter-intuitive, but in fact it’s similar to what most people will often do
anyway: they describe a problem, then create some code to solve it. Test-driven
development simply formalizes the problem in a Python test case.

More often, a newcomer to testing will create some code and later decide that
it should have some tests. Perhaps it would have been better to write some
tests earlier, but it’s never too late to get started.

Sometimes it’s difficult to figure out where to get started with writing tests.
If you have written several thousand lines of Python, choosing something to
test might not be easy. In such a case, it’s fruitful to write your first test
the next time you make a change, either when you add a new feature or fix a bug.

So let’s do that right away.

Writing our first test

We identify a bug

Fortunately, there’s a little bug in the polls application for us to fix
right away: the Question.was_published_recently() method returns True if
the Question was published within the last day (which is correct) but also if
the Question’s pub_date field is in the future (which certainly isn’t).

Confirm the bug by using the :djadmin:`shell` to check the method on a question
whose date lies in the future:

>>> import datetime
>>> from django.utils import timezone
>>> from polls.models import Question
>>> # create a Question instance with pub_date 30 days in the future
>>> future_question = Question(pub_date=timezone.now() + datetime.timedelta(days=30))
>>> # was it published recently?
>>> future_question.was_published_recently()
True

Since things in the future are not ‘recent’, this is clearly wrong.

Create a test to expose the bug

What we’ve just done in the :djadmin:`shell` to test for the problem is exactly
what we can do in an automated test, so let’s turn that into an automated test.

A conventional place for an application’s tests is in the application’s
tests.py file; the testing system will automatically find tests in any file
whose name begins with test.

Put the following in the tests.py file in the polls application:

polls/tests.py

import datetime

from django.test import TestCase
from django.utils import timezone

from .models import Question

class QuestionModelTests(TestCase):

 def test_was_published_recently_with_future_question(self):
 """
 was_published_recently() returns False for questions whose pub_date
 is in the future.
 """
 time = timezone.now() + datetime.timedelta(days=30)
 future_question = Question(pub_date=time)
 self.assertIs(future_question.was_published_recently(), False)

Here we have created a django.test.TestCase subclass with a method that
creates a Question instance with a pub_date in the future. We then check
the output of was_published_recently() - which ought to be False.

Running tests

In the terminal, we can run our test:

and you’ll see something like:

Creating test database for alias 'default'…
System check identified no issues (0 silenced).
F
==
FAIL: test_was_published_recently_with_future_question (polls.tests.QuestionModelTests)
--
Traceback (most recent call last):
 File "/path/to/mysite/polls/tests.py", line 16, in test_was_published_recently_with_future_question
 self.assertIs(future_question.was_published_recently(), False)
AssertionError: True is not False

--
Ran 1 test in 0.001s

FAILED (failures=1)
Destroying test database for alias 'default'…

What happened is this:

	manage.py test polls looked for tests in the polls application

	it found a subclass of the django.test.TestCase class

	it created a special database for the purpose of testing

	it looked for test methods - ones whose names begin with test

	in test_was_published_recently_with_future_question it created a Question
instance whose pub_date field is 30 days in the future

	… and using the assertIs() method, it discovered that its
was_published_recently() returns True, though we wanted it to return
False

The test informs us which test failed and even the line on which the failure
occurred.

Fixing the bug

We already know what the problem is: Question.was_published_recently() should
return False if its pub_date is in the future. Amend the method in
models.py, so that it will only return True if the date is also in the
past:

polls/models.py

def was_published_recently(self):
 now = timezone.now()
 return now - datetime.timedelta(days=1) <= self.pub_date <= now

and run the test again:

Creating test database for alias 'default'…
System check identified no issues (0 silenced).
.
--
Ran 1 test in 0.001s

OK
Destroying test database for alias 'default'…

After identifying a bug, we wrote a test that exposes it and corrected the bug
in the code so our test passes.

Many other things might go wrong with our application in the future, but we can
be sure that we won’t inadvertently reintroduce this bug, because simply
running the test will warn us immediately. We can consider this little portion
of the application pinned down safely forever.

More comprehensive tests

While we’re here, we can further pin down the was_published_recently()
method; in fact, it would be positively embarrassing if in fixing one bug we had
introduced another.

Add two more test methods to the same class, to test the behavior of the method
more comprehensively:

polls/tests.py

def test_was_published_recently_with_old_question(self):
 """
 was_published_recently() returns False for questions whose pub_date
 is older than 1 day.
 """
 time = timezone.now() - datetime.timedelta(days=1, seconds=1)
 old_question = Question(pub_date=time)
 self.assertIs(old_question.was_published_recently(), False)

def test_was_published_recently_with_recent_question(self):
 """
 was_published_recently() returns True for questions whose pub_date
 is within the last day.
 """
 time = timezone.now() - datetime.timedelta(hours=23, minutes=59, seconds=59)
 recent_question = Question(pub_date=time)
 self.assertIs(recent_question.was_published_recently(), True)

And now we have three tests that confirm that Question.was_published_recently()
returns sensible values for past, recent, and future questions.

Again, polls is a simple application, but however complex it grows in the
future and whatever other code it interacts with, we now have some guarantee
that the method we have written tests for will behave in expected ways.

Test a view

The polls application is fairly undiscriminating: it will publish any question,
including ones whose pub_date field lies in the future. We should improve
this. Setting a pub_date in the future should mean that the Question is
published at that moment, but invisible until then.

A test for a view

When we fixed the bug above, we wrote the test first and then the code to fix
it. In fact that was a simple example of test-driven development, but it
doesn’t really matter in which order we do the work.

In our first test, we focused closely on the internal behavior of the code. For
this test, we want to check its behavior as it would be experienced by a user
through a web browser.

Before we try to fix anything, let’s have a look at the tools at our disposal.

The Django test client

Django provides a test Client to simulate a user
interacting with the code at the view level. We can use it in tests.py
or even in the :djadmin:`shell`.

We will start again with the :djadmin:`shell`, where we need to do a couple of
things that won’t be necessary in tests.py. The first is to set up the test
environment in the :djadmin:`shell`:

>>> from django.test.utils import setup_test_environment
>>> setup_test_environment()

setup_test_environment() installs a template renderer
which will allow us to examine some additional attributes on responses such as
response.context that otherwise wouldn’t be available. Note that this
method does not setup a test database, so the following will be run against
the existing database and the output may differ slightly depending on what
questions you already created. You might get unexpected results if your
TIME_ZONE in settings.py isn’t correct. If you don’t remember setting
it earlier, check it before continuing.

Next we need to import the test client class (later in tests.py we will use
the django.test.TestCase class, which comes with its own client, so
this won’t be required):

>>> from django.test import Client
>>> # create an instance of the client for our use
>>> client = Client()

With that ready, we can ask the client to do some work for us:

>>> # get a response from '/'
>>> response = client.get('/')
Not Found: /
>>> # we should expect a 404 from that address; if you instead see an
>>> # "Invalid HTTP_HOST header" error and a 400 response, you probably
>>> # omitted the setup_test_environment() call described earlier.
>>> response.status_code
404
>>> # on the other hand we should expect to find something at '/polls/'
>>> # we'll use 'reverse()' rather than a hardcoded URL
>>> from django.urls import reverse
>>> response = client.get(reverse('polls:index'))
>>> response.status_code
200
>>> response.content
b'\n \n \n What's up?\n \n \n\n'
>>> response.context['latest_question_list']
<QuerySet [<Question: What's up?>]>

Improving our view

The list of polls shows polls that aren’t published yet (i.e. those that have a
pub_date in the future). Let’s fix that.

In Tutorial 4 we introduced a class-based view,
based on ListView:

polls/views.py

class IndexView(generic.ListView):
 template_name = 'polls/index.html'
 context_object_name = 'latest_question_list'

 def get_queryset(self):
 """Return the last five published questions."""
 return Question.objects.order_by('-pub_date')[:5]

We need to amend the get_queryset() method and change it so that it also
checks the date by comparing it with timezone.now(). First we need to add
an import:

polls/views.py

from django.utils import timezone

and then we must amend the get_queryset method like so:

polls/views.py

def get_queryset(self):
 """
 Return the last five published questions (not including those set to be
 published in the future).
 """
 return Question.objects.filter(
 pub_date__lte=timezone.now()
).order_by('-pub_date')[:5]

Question.objects.filter(pub_date__lte=timezone.now()) returns a queryset
containing Questions whose pub_date is less than or equal to - that
is, earlier than or equal to - timezone.now.

Testing our new view

Now you can satisfy yourself that this behaves as expected by firing up
runserver, loading the site in your browser, creating Questions with
dates in the past and future, and checking that only those that have been
published are listed. You don’t want to have to do that every single time you
make any change that might affect this - so let’s also create a test, based on
our :djadmin:`shell` session above.

Add the following to polls/tests.py:

polls/tests.py

from django.urls import reverse

and we’ll create a shortcut function to create questions as well as a new test
class:

polls/tests.py

def create_question(question_text, days):
 """
 Create a question with the given `question_text` and published the
 given number of `days` offset to now (negative for questions published
 in the past, positive for questions that have yet to be published).
 """
 time = timezone.now() + datetime.timedelta(days=days)
 return Question.objects.create(question_text=question_text, pub_date=time)

class QuestionIndexViewTests(TestCase):
 def test_no_questions(self):
 """
 If no questions exist, an appropriate message is displayed.
 """
 response = self.client.get(reverse('polls:index'))
 self.assertEqual(response.status_code, 200)
 self.assertContains(response, "No polls are available.")
 self.assertQuerysetEqual(response.context['latest_question_list'], [])

 def test_past_question(self):
 """
 Questions with a pub_date in the past are displayed on the
 index page.
 """
 create_question(question_text="Past question.", days=-30)
 response = self.client.get(reverse('polls:index'))
 self.assertQuerysetEqual(
 response.context['latest_question_list'],
 ['<Question: Past question.>']
)

 def test_future_question(self):
 """
 Questions with a pub_date in the future aren't displayed on
 the index page.
 """
 create_question(question_text="Future question.", days=30)
 response = self.client.get(reverse('polls:index'))
 self.assertContains(response, "No polls are available.")
 self.assertQuerysetEqual(response.context['latest_question_list'], [])

 def test_future_question_and_past_question(self):
 """
 Even if both past and future questions exist, only past questions
 are displayed.
 """
 create_question(question_text="Past question.", days=-30)
 create_question(question_text="Future question.", days=30)
 response = self.client.get(reverse('polls:index'))
 self.assertQuerysetEqual(
 response.context['latest_question_list'],
 ['<Question: Past question.>']
)

 def test_two_past_questions(self):
 """
 The questions index page may display multiple questions.
 """
 create_question(question_text="Past question 1.", days=-30)
 create_question(question_text="Past question 2.", days=-5)
 response = self.client.get(reverse('polls:index'))
 self.assertQuerysetEqual(
 response.context['latest_question_list'],
 ['<Question: Past question 2.>', '<Question: Past question 1.>']
)

Let’s look at some of these more closely.

First is a question shortcut function, create_question, to take some
repetition out of the process of creating questions.

test_no_questions doesn’t create any questions, but checks the message:
“No polls are available.” and verifies the latest_question_list is empty.
Note that the django.test.TestCase class provides some additional
assertion methods. In these examples, we use
assertContains() and
assertQuerysetEqual().

In test_past_question, we create a question and verify that it appears in
the list.

In test_future_question, we create a question with a pub_date in the
future. The database is reset for each test method, so the first question is no
longer there, and so again the index shouldn’t have any questions in it.

And so on. In effect, we are using the tests to tell a story of admin input
and user experience on the site, and checking that at every state and for every
new change in the state of the system, the expected results are published.

Testing the DetailView

What we have works well; however, even though future questions don’t appear in
the index, users can still reach them if they know or guess the right URL. So
we need to add a similar constraint to DetailView:

polls/views.py

class DetailView(generic.DetailView):
 ...
 def get_queryset(self):
 """
 Excludes any questions that aren't published yet.
 """
 return Question.objects.filter(pub_date__lte=timezone.now())

And of course, we will add some tests, to check that a Question whose
pub_date is in the past can be displayed, and that one with a pub_date
in the future is not:

polls/tests.py

class QuestionDetailViewTests(TestCase):
 def test_future_question(self):
 """
 The detail view of a question with a pub_date in the future
 returns a 404 not found.
 """
 future_question = create_question(question_text='Future question.', days=5)
 url = reverse('polls:detail', args=(future_question.id,))
 response = self.client.get(url)
 self.assertEqual(response.status_code, 404)

 def test_past_question(self):
 """
 The detail view of a question with a pub_date in the past
 displays the question's text.
 """
 past_question = create_question(question_text='Past Question.', days=-5)
 url = reverse('polls:detail', args=(past_question.id,))
 response = self.client.get(url)
 self.assertContains(response, past_question.question_text)

Ideas for more tests

We ought to add a similar get_queryset method to ResultsView and
create a new test class for that view. It’ll be very similar to what we have
just created; in fact there will be a lot of repetition.

We could also improve our application in other ways, adding tests along the
way. For example, it’s silly that Questions can be published on the site
that have no Choices. So, our views could check for this, and exclude such
Questions. Our tests would create a Question without Choices and
then test that it’s not published, as well as create a similar Question
with Choices, and test that it is published.

Perhaps logged-in admin users should be allowed to see unpublished
Questions, but not ordinary visitors. Again: whatever needs to be added to
the software to accomplish this should be accompanied by a test, whether you
write the test first and then make the code pass the test, or work out the
logic in your code first and then write a test to prove it.

At a certain point you are bound to look at your tests and wonder whether your
code is suffering from test bloat, which brings us to:

When testing, more is better

It might seem that our tests are growing out of control. At this rate there will
soon be more code in our tests than in our application, and the repetition
is unaesthetic, compared to the elegant conciseness of the rest of our code.

It doesn’t matter. Let them grow. For the most part, you can write a test
once and then forget about it. It will continue performing its useful function
as you continue to develop your program.

Sometimes tests will need to be updated. Suppose that we amend our views so that
only Questions with Choices are published. In that case, many of our
existing tests will fail - telling us exactly which tests need to be amended to
bring them up to date, so to that extent tests help look after themselves.

At worst, as you continue developing, you might find that you have some tests
that are now redundant. Even that’s not a problem; in testing redundancy is
a good thing.

As long as your tests are sensibly arranged, they won’t become unmanageable.
Good rules-of-thumb include having:

	a separate TestClass for each model or view

	a separate test method for each set of conditions you want to test

	test method names that describe their function

Further testing

This tutorial only introduces some of the basics of testing. There’s a great
deal more you can do, and a number of very useful tools at your disposal to
achieve some very clever things.

For example, while our tests here have covered some of the internal logic of a
model and the way our views publish information, you can use an “in-browser”
framework such as Selenium [http://seleniumhq.org/] to test the way your HTML actually renders in a
browser. These tools allow you to check not just the behavior of your Django
code, but also, for example, of your JavaScript. It’s quite something to see
the tests launch a browser, and start interacting with your site, as if a human
being were driving it! Django includes LiveServerTestCase
to facilitate integration with tools like Selenium.

If you have a complex application, you may want to run tests automatically
with every commit for the purposes of continuous integration [https://en.wikipedia.org/wiki/Continuous_integration], so that
quality control is itself - at least partially - automated.

A good way to spot untested parts of your application is to check code
coverage. This also helps identify fragile or even dead code. If you can’t test
a piece of code, it usually means that code should be refactored or removed.
Coverage will help to identify dead code. See
topics-testing-code-coverage for details.

Testing in Django has comprehensive
information about testing.

What’s next?

For full details on testing, see Testing in Django.

When you’re comfortable with testing Django views, read
part 6 of this tutorial to learn about
static files management.

Writing your first Django app, part 6

Warning

原完整網頁參照官網 https://docs.djangoproject.com/en/2.1/intro/tutorial06/
，以下是只是個人的心得筆記。

This tutorial begins where Tutorial 5 left off.
We’ve built a tested Web-poll application, and we’ll now add a stylesheet and
an image.

Aside from the HTML generated by the server, web applications generally need
to serve additional files — such as images, JavaScript, or CSS — necessary to
render the complete web page. In Django, we refer to these files as “static
files”.

For small projects, this isn’t a big deal, because you can just keep the
static files somewhere your web server can find it. However, in bigger
projects – especially those comprised of multiple apps – dealing with the
multiple sets of static files provided by each application starts to get
tricky.

That’s what django.contrib.staticfiles is for: it collects static files
from each of your applications (and any other places you specify) into a
single location that can easily be served in production.

Customize your app’s look and feel

First, create a directory called static in your polls directory. Django
will look for static files there, similarly to how Django finds templates
inside polls/templates/.

Django’s :setting:`STATICFILES_FINDERS` setting contains a list
of finders that know how to discover static files from various
sources. One of the defaults is AppDirectoriesFinder which
looks for a “static” subdirectory in each of the
:setting:`INSTALLED_APPS`, like the one in polls we just created. The admin
site uses the same directory structure for its static files.

Within the static directory you have just created, create another directory
called polls and within that create a file called style.css. In other
words, your stylesheet should be at polls/static/polls/style.css. Because
of how the AppDirectoriesFinder staticfile finder works, you can refer to
this static file in Django simply as polls/style.css, similar to how you
reference the path for templates.

Static file namespacing

Just like templates, we might be able to get away with putting our static
files directly in polls/static (rather than creating another polls
subdirectory), but it would actually be a bad idea. Django will choose the
first static file it finds whose name matches, and if you had a static file
with the same name in a different application, Django would be unable to
distinguish between them. We need to be able to point Django at the right
one, and the easiest way to ensure this is by namespacing them. That is,
by putting those static files inside another directory named for the
application itself.

Put the following code in that stylesheet (polls/static/polls/style.css):

polls/static/polls/style.css

li a {
 color: green;
}

Next, add the following at the top of polls/templates/polls/index.html:

polls/templates/polls/index.html

{% load static %}

<link rel="stylesheet" type="text/css" href="{% static 'polls/style.css' %}">

The {% static %} template tag generates the absolute URL of static files.

That’s all you need to do for development.

Start the server (or restart it if it’s already running):

Reload http://localhost:8000/polls/ and you should see that the question
links are green (Django style!) which means that your stylesheet was properly
loaded.

Adding a background-image

Next, we’ll create a subdirectory for images. Create an images subdirectory
in the polls/static/polls/ directory. Inside this directory, put an image
called background.gif. In other words, put your image in
polls/static/polls/images/background.gif.

Then, add to your stylesheet (polls/static/polls/style.css):

polls/static/polls/style.css

body {
 background: white url("images/background.gif") no-repeat;
}

Reload http://localhost:8000/polls/ and you should see the background
loaded in the top left of the screen.

Warning

Of course the {% static %} template tag is not available for use in
static files like your stylesheet which aren’t generated by Django. You
should always use relative paths to link your static files between each
other, because then you can change :setting:`STATIC_URL` (used by the
:ttag:`static` template tag to generate its URLs) without having to modify
a bunch of paths in your static files as well.

These are the basics. For more details on settings and other bits included
with the framework see
the static files howto and
the staticfiles reference. Deploying
static files discusses how to use static
files on a real server.

When you’re comfortable with the static files, read part 7 of this
tutorial to learn how to customize Django’s
automatically-generated admin site.

Writing your first Django app, part 7

Warning

原完整網頁參照官網 https://docs.djangoproject.com/en/2.1/intro/tutorial07/
，以下是只是個人的心得筆記。

This tutorial begins where Tutorial 6 left off. We’re
continuing the Web-poll application and will focus on customizing Django’s
automatically-generated admin site that we first explored in Tutorial 2.

Customize the admin form

By registering the Question model with admin.site.register(Question),
Django was able to construct a default form representation. Often, you’ll want
to customize how the admin form looks and works. You’ll do this by telling
Django the options you want when you register the object.

Let’s see how this works by reordering the fields on the edit form. Replace
the admin.site.register(Question) line with:

polls/admin.py

from django.contrib import admin

from .models import Question

class QuestionAdmin(admin.ModelAdmin):
 fields = ['pub_date', 'question_text']

admin.site.register(Question, QuestionAdmin)

You’ll follow this pattern – create a model admin class, then pass it as the
second argument to admin.site.register() – any time you need to change the
admin options for a model.

This particular change above makes the “Publication date” come before the
“Question” field:

[image: Fields have been reordered]
This isn’t impressive with only two fields, but for admin forms with dozens
of fields, choosing an intuitive order is an important usability detail.

And speaking of forms with dozens of fields, you might want to split the form
up into fieldsets:

polls/admin.py

from django.contrib import admin

from .models import Question

class QuestionAdmin(admin.ModelAdmin):
 fieldsets = [
 (None, {'fields': ['question_text']}),
 ('Date information', {'fields': ['pub_date']}),
]

admin.site.register(Question, QuestionAdmin)

The first element of each tuple in
fieldsets is the title of the fieldset.
Here’s what our form looks like now:

[image: Form has fieldsets now]

Adding related objects

OK, we have our Question admin page, but a Question has multiple
Choices, and the admin page doesn’t display choices.

Yet.

There are two ways to solve this problem. The first is to register Choice
with the admin just as we did with Question. That’s easy:

polls/admin.py

from django.contrib import admin

from .models import Choice, Question
...
admin.site.register(Choice)

Now “Choices” is an available option in the Django admin. The “Add choice” form
looks like this:

[image: Choice admin page]
In that form, the “Question” field is a select box containing every question in the
database. Django knows that a ForeignKey should be
represented in the admin as a <select> box. In our case, only one question
exists at this point.

Also note the “Add Another” link next to “Question.” Every object with a
ForeignKey relationship to another gets this for free. When you click “Add
Another”, you’ll get a popup window with the “Add question” form. If you add a question
in that window and click “Save”, Django will save the question to the database and
dynamically add it as the selected choice on the “Add choice” form you’re
looking at.

But, really, this is an inefficient way of adding Choice objects to the system.
It’d be better if you could add a bunch of Choices directly when you create the
Question object. Let’s make that happen.

Remove the register() call for the Choice model. Then, edit the Question
registration code to read:

polls/admin.py

from django.contrib import admin

from .models import Choice, Question

class ChoiceInline(admin.StackedInline):
 model = Choice
 extra = 3

class QuestionAdmin(admin.ModelAdmin):
 fieldsets = [
 (None, {'fields': ['question_text']}),
 ('Date information', {'fields': ['pub_date'], 'classes': ['collapse']}),
]
 inlines = [ChoiceInline]

admin.site.register(Question, QuestionAdmin)

This tells Django: “Choice objects are edited on the Question admin page. By
default, provide enough fields for 3 choices.”

Load the “Add question” page to see how that looks:

[image: Add question page now has choices on it]
It works like this: There are three slots for related Choices – as specified
by extra – and each time you come back to the “Change” page for an
already-created object, you get another three extra slots.

At the end of the three current slots you will find an “Add another Choice”
link. If you click on it, a new slot will be added. If you want to remove the
added slot, you can click on the X to the top right of the added slot. Note
that you can’t remove the original three slots. This image shows an added slot:

[image: Additional slot added dynamically]
One small problem, though. It takes a lot of screen space to display all the
fields for entering related Choice objects. For that reason, Django offers a
tabular way of displaying inline related objects; you just need to change
the ChoiceInline declaration to read:

polls/admin.py

class ChoiceInline(admin.TabularInline):
 #...

With that TabularInline (instead of StackedInline), the
related objects are displayed in a more compact, table-based format:

[image: Add question page now has more compact choices]
Note that there is an extra “Delete?” column that allows removing rows added
using the “Add Another Choice” button and rows that have already been saved.

Customize the admin change list

Now that the Question admin page is looking good, let’s make some tweaks to the
“change list” page – the one that displays all the questions in the system.

Here’s what it looks like at this point:

[image: Polls change list page]
By default, Django displays the str() of each object. But sometimes it’d be
more helpful if we could display individual fields. To do that, use the
list_display admin option, which is a
tuple of field names to display, as columns, on the change list page for the
object:

polls/admin.py

class QuestionAdmin(admin.ModelAdmin):
 # ...
 list_display = ('question_text', 'pub_date')

Just for good measure, let’s also include the was_published_recently()
method from Tutorial 2:

polls/admin.py

class QuestionAdmin(admin.ModelAdmin):
 # ...
 list_display = ('question_text', 'pub_date', 'was_published_recently')

Now the question change list page looks like this:

[image: Polls change list page, updated]
You can click on the column headers to sort by those values – except in the
case of the was_published_recently header, because sorting by the output
of an arbitrary method is not supported. Also note that the column header for
was_published_recently is, by default, the name of the method (with
underscores replaced with spaces), and that each line contains the string
representation of the output.

You can improve that by giving that method (in polls/models.py) a few
attributes, as follows:

polls/models.py

class Question(models.Model):
 # ...
 def was_published_recently(self):
 now = timezone.now()
 return now - datetime.timedelta(days=1) <= self.pub_date <= now
 was_published_recently.admin_order_field = 'pub_date'
 was_published_recently.boolean = True
 was_published_recently.short_description = 'Published recently?'

For more information on these method properties, see
list_display.

Edit your polls/admin.py file again and add an improvement to the
Question change list page: filters using the
list_filter. Add the following line to
QuestionAdmin:

list_filter = ['pub_date']

That adds a “Filter” sidebar that lets people filter the change list by the
pub_date field:

[image: Polls change list page, updated]
The type of filter displayed depends on the type of field you’re filtering on.
Because pub_date is a DateTimeField, Django
knows to give appropriate filter options: “Any date”, “Today”, “Past 7 days”,
“This month”, “This year”.

This is shaping up well. Let’s add some search capability:

search_fields = ['question_text']

That adds a search box at the top of the change list. When somebody enters
search terms, Django will search the question_text field. You can use as many
fields as you’d like – although because it uses a LIKE query behind the
scenes, limiting the number of search fields to a reasonable number will make
it easier for your database to do the search.

Now’s also a good time to note that change lists give you free pagination. The
default is to display 100 items per page. Change list pagination, search boxes, filters, date-hierarchies, and
column-header-ordering
all work together like you think they should.

Customize the admin look and feel

Clearly, having “Django administration” at the top of each admin page is
ridiculous. It’s just placeholder text.

That’s easy to change, though, using Django’s template system. The Django admin
is powered by Django itself, and its interfaces use Django’s own template
system.

Customizing your project’s templates

Create a templates directory in your project directory (the one that
contains manage.py). Templates can live anywhere on your filesystem that
Django can access. (Django runs as whatever user your server runs.) However,
keeping your templates within the project is a good convention to follow.

Open your settings file (mysite/settings.py, remember) and add a
:setting:`DIRS <TEMPLATES-DIRS>` option in the :setting:`TEMPLATES` setting:

mysite/settings.py

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [os.path.join(BASE_DIR, 'templates')],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },
 },
]

:setting:`DIRS <TEMPLATES-DIRS>` is a list of filesystem directories to check
when loading Django templates; it’s a search path.

Organizing templates

Just like the static files, we could have all our templates together, in
one big templates directory, and it would work perfectly well. However,
templates that belong to a particular application should be placed in that
application’s template directory (e.g. polls/templates) rather than the
project’s (templates). We’ll discuss in more detail in the
reusable apps tutorial why we do this.

Now create a directory called admin inside templates, and copy the
template admin/base_site.html from within the default Django admin
template directory in the source code of Django itself
(django/contrib/admin/templates) into that directory.

Where are the Django source files?

If you have difficulty finding where the Django source files are located
on your system, run the following command:

Then, just edit the file and replace
{{ site_header|default:_('Django administration') }} (including the curly
braces) with your own site’s name as you see fit. You should end up with
a section of code like:

{% block branding %}
<h1 id="site-name">Polls Administration</h1>
{% endblock %}

We use this approach to teach you how to override templates. In an actual
project, you would probably use
the django.contrib.admin.AdminSite.site_header attribute to more easily
make this particular customization.

This template file contains lots of text like {% block branding %}
and {{ title }}. The {% and {{ tags are part of Django’s
template language. When Django renders admin/base_site.html, this
template language will be evaluated to produce the final HTML page, just like
we saw in Tutorial 3.

Note that any of Django’s default admin templates can be overridden. To
override a template, just do the same thing you did with base_site.html –
copy it from the default directory into your custom directory, and make
changes.

Customizing your application’s templates

Astute readers will ask: But if :setting:`DIRS <TEMPLATES-DIRS>` was empty by
default, how was Django finding the default admin templates? The answer is
that, since :setting:`APP_DIRS <TEMPLATES-APP_DIRS>` is set to True,
Django automatically looks for a templates/ subdirectory within each
application package, for use as a fallback (don’t forget that
django.contrib.admin is an application).

Our poll application is not very complex and doesn’t need custom admin
templates. But if it grew more sophisticated and required modification of
Django’s standard admin templates for some of its functionality, it would be
more sensible to modify the application’s templates, rather than those in the
project. That way, you could include the polls application in any new project
and be assured that it would find the custom templates it needed.

See the template loading documentation for more
information about how Django finds its templates.

Customize the admin index page

On a similar note, you might want to customize the look and feel of the Django
admin index page.

By default, it displays all the apps in :setting:`INSTALLED_APPS` that have been
registered with the admin application, in alphabetical order. You may want to
make significant changes to the layout. After all, the index is probably the
most important page of the admin, and it should be easy to use.

The template to customize is admin/index.html. (Do the same as with
admin/base_site.html in the previous section – copy it from the default
directory to your custom template directory). Edit the file, and you’ll see it
uses a template variable called app_list. That variable contains every
installed Django app. Instead of using that, you can hard-code links to
object-specific admin pages in whatever way you think is best.

What’s next?

The beginner tutorial ends here. In the meantime, you might want to check out
some pointers on where to go from here.

If you are familiar with Python packaging and interested in learning how to
turn polls into a “reusable app”, check out Advanced tutorial: How to
write reusable apps.

Index

Writing your first patch for Django

Introduction

Interested in giving back to the community a little? Maybe you’ve found a bug
in Django that you’d like to see fixed, or maybe there’s a small feature you
want added.

Contributing back to Django itself is the best way to see your own concerns
addressed. This may seem daunting at first, but it’s really pretty simple.
We’ll walk you through the entire process, so you can learn by example.

Who’s this tutorial for?

See also

If you are looking for a reference on how to submit patches, see the
/internals/contributing/writing-code/submitting-patches
documentation.

For this tutorial, we expect that you have at least a basic understanding of
how Django works. This means you should be comfortable going through the
existing tutorials on writing your first Django app.
In addition, you should have a good understanding of Python itself. But if you
don’t, Dive Into Python [https://www.diveinto.org/python3/] is a fantastic (and free) online book for
beginning Python programmers.

Those of you who are unfamiliar with version control systems and Trac will find
that this tutorial and its links include just enough information to get started.
However, you’ll probably want to read some more about these different tools if
you plan on contributing to Django regularly.

For the most part though, this tutorial tries to explain as much as possible,
so that it can be of use to the widest audience.

Where to get help:

If you’re having trouble going through this tutorial, please post a message
to |django-developers| or drop by #django-dev on irc.freenode.net to
chat with other Django users who might be able to help.

What does this tutorial cover?

We’ll be walking you through contributing a patch to Django for the first time.
By the end of this tutorial, you should have a basic understanding of both the
tools and the processes involved. Specifically, we’ll be covering the following:

	Installing Git.

	Downloading a copy of Django’s development version.

	Running Django’s test suite.

	Writing a test for your patch.

	Writing the code for your patch.

	Testing your patch.

	Submitting a pull request.

	Where to look for more information.

Once you’re done with the tutorial, you can look through the rest of
Django’s documentation on contributing.
It contains lots of great information and is a must read for anyone who’d like
to become a regular contributor to Django. If you’ve got questions, it’s
probably got the answers.

Python 3 required!

The current version of Django doesn’t support Python 2.7. Get Python 3 at
Python’s download page [https://www.python.org/downloads/] or with your
operating system’s package manager.

For Windows users

When installing Python on Windows, make sure you check the option “Add
python.exe to Path”, so that it is always available on the command line.

Code of Conduct

As a contributor, you can help us keep the Django community open and inclusive.
Please read and follow our Code of Conduct [https://www.djangoproject.com/conduct/].

Installing Git

For this tutorial, you’ll need Git installed to download the current
development version of Django and to generate patch files for the changes you
make.

To check whether or not you have Git installed, enter git into the command
line. If you get messages saying that this command could not be found, you’ll
have to download and install it, see Git’s download page [https://git-scm.com/download].

If you’re not that familiar with Git, you can always find out more about its
commands (once it’s installed) by typing git help into the command line.

Getting a copy of Django’s development version

The first step to contributing to Django is to get a copy of the source code.
First, fork Django on GitHub [https://github.com/django/django/fork]. Then,
from the command line, use the cd command to navigate to the directory
where you’ll want your local copy of Django to live.

Download the Django source code repository using the following command:

Low bandwidth connection?

You can add the --depth 1 argument to git clone to skip downloading
all of Django’s commit history, which reduces data transfer from ~250 MB
to ~70 MB.

Now that you have a local copy of Django, you can install it just like you would
install any package using pip. The most convenient way to do so is by using
a virtual environment, which is a feature built into Python that allows you
to keep a separate directory of installed packages for each of your projects so
that they don’t interfere with each other.

It’s a good idea to keep all your virtual environments in one place, for
example in .virtualenvs/ in your home directory.

Create a new virtual environment by running:

The path is where the new environment will be saved on your computer.

The final step in setting up your virtual environment is to activate it:

$ source ~/.virtualenvs/djangodev/bin/activate

If the source command is not available, you can try using a dot instead:

$. ~/.virtualenvs/djangodev/bin/activate

For Windows users

To activate your virtual environment on Windows, run:

...\> %HOMEPATH%\.virtualenvs\djangodev\Scripts\activate.bat

You have to activate the virtual environment whenever you open a new
terminal window. virtualenvwrapper [https://virtualenvwrapper.readthedocs.io/en/latest/] is a useful tool for making this
more convenient.

The name of the currently activated virtual environment is displayed on the
command line to help you keep track of which one you are using. Anything you
install through pip while this name is displayed will be installed in that
virtual environment, isolated from other environments and system-wide packages.

Go ahead and install the previously cloned copy of Django:

The installed version of Django is now pointing at your local copy. You will
immediately see any changes you make to it, which is of great help when writing
your first patch.

Running Django’s test suite for the first time

When contributing to Django it’s very important that your code changes don’t
introduce bugs into other areas of Django. One way to check that Django still
works after you make your changes is by running Django’s test suite. If all
the tests still pass, then you can be reasonably sure that your changes
work and haven’t broken other parts Django. If you’ve never run Django’s test
suite before, it’s a good idea to run it once beforehand to get familiar with
its output.

Before running the test suite, install its dependencies by cd-ing into the
Django tests/ directory and then running:

If you encounter an error during the installation, your system might be missing
a dependency for one or more of the Python packages. Consult the failing
package’s documentation or search the Web with the error message that you
encounter.

Now we are ready to run the test suite. If you’re using GNU/Linux, macOS, or
some other flavor of Unix, run:

Now sit back and relax. Django’s entire test suite has thousands of tests, and
it takes at least a few minutes run, depending on the speed of your computer.

While Django’s test suite is running, you’ll see a stream of characters
representing the status of each test as it completes. E indicates that an
error was raised during a test, and F indicates that a test’s assertions
failed. Both of these are considered to be test failures. Meanwhile, x and
s indicated expected failures and skipped tests, respectively. Dots indicate
passing tests.

Skipped tests are typically due to missing external libraries required to run
the test; see running-unit-tests-dependencies for a list of dependencies
and be sure to install any for tests related to the changes you are making (we
won’t need any for this tutorial). Some tests are specific to a particular
database backend and will be skipped if not testing with that backend. SQLite
is the database backend for the default settings. To run the tests using a
different backend, see running-unit-tests-settings.

Once the tests complete, you should be greeted with a message informing you
whether the test suite passed or failed. Since you haven’t yet made any changes
to Django’s code, the entire test suite should pass. If you get failures or
errors make sure you’ve followed all of the previous steps properly. See
running-unit-tests for more information.

Note that the latest Django master may not always be stable. When developing
against master, you can check Django’s continuous integration builds [https://djangoci.com] to
determine if the failures are specific to your machine or if they are also
present in Django’s official builds. If you click to view a particular build,
you can view the “Configuration Matrix” which shows failures broken down by
Python version and database backend.

Note

For this tutorial and the ticket we’re working on, testing against SQLite
is sufficient, however, it’s possible (and sometimes necessary) to
run the tests using a different database.

Working on a feature

For this tutorial, we’ll work on a “fake ticket” as a case study. Here are the
imaginary details:

Ticket #99999 – Allow making toast

Django should provide a function django.shortcuts.make_toast() that
returns 'toast'.

We’ll now implement this feature and associated tests.

Creating a branch for your patch

Before making any changes, create a new branch for the ticket:

You can choose any name that you want for the branch, “ticket_99999” is an
example. All changes made in this branch will be specific to the ticket and
won’t affect the main copy of the code that we cloned earlier.

Writing some tests for your ticket

In most cases, for a patch to be accepted into Django it has to include tests.
For bug fix patches, this means writing a regression test to ensure that the
bug is never reintroduced into Django later on. A regression test should be
written in such a way that it will fail while the bug still exists and pass
once the bug has been fixed. For patches containing new features, you’ll need
to include tests which ensure that the new features are working correctly.
They too should fail when the new feature is not present, and then pass once it
has been implemented.

A good way to do this is to write your new tests first, before making any
changes to the code. This style of development is called
test-driven development [https://en.wikipedia.org/wiki/Test-driven_development] and can be applied to both entire projects and
single patches. After writing your tests, you then run them to make sure that
they do indeed fail (since you haven’t fixed that bug or added that feature
yet). If your new tests don’t fail, you’ll need to fix them so that they do.
After all, a regression test that passes regardless of whether a bug is present
is not very helpful at preventing that bug from reoccurring down the road.

Now for our hands-on example.

Writing a test for ticket #99999

In order to resolve this ticket, we’ll add a make_toast() function to the
top-level django module. First we are going to write a test that tries to
use the function and check that its output looks correct.

Navigate to Django’s tests/shortcuts/ folder and create a new file
test_make_toast.py. Add the following code:

from django.shortcuts import make_toast
from django.test import SimpleTestCase

class MakeToastTests(SimpleTestCase):
 def test_make_toast(self):
 self.assertEqual(make_toast(), 'toast')

This test checks that the make_toast() returns 'toast'.

But this testing thing looks kinda hard…

If you’ve never had to deal with tests before, they can look a little hard
to write at first glance. Fortunately, testing is a very big subject in
computer programming, so there’s lots of information out there:

	A good first look at writing tests for Django can be found in the
documentation on /topics/testing/overview.

	Dive Into Python (a free online book for beginning Python developers)
includes a great introduction to Unit Testing [https://www.diveinto.org/python3/unit-testing.html].

	After reading those, if you want something a little meatier to sink
your teeth into, there’s always the Python unittest documentation.

Running your new test

Since we haven’t made any modifications to django.shortcuts yet, our test
should fail. Let’s run all the tests in the shortcuts folder to make sure
that’s really what happens. cd to the Django tests/ directory and run:

If the tests ran correctly, you should see one failure corresponding to the test
method we added, with this error:

ImportError: cannot import name 'make_toast' from 'django.shortcuts'

If all of the tests passed, then you’ll want to make sure that you added the
new test shown above to the appropriate folder and file name.

Writing the code for your ticket

Next we’ll be adding the make_toast() function.

Navigate to the django/ folder and open the shortcuts.py file. At the
bottom, add:

def make_toast():
 return 'toast'

Now we need to make sure that the test we wrote earlier passes, so we can see
whether the code we added is working correctly. Again, navigate to the Django
tests/ directory and run:

Everything should pass. If it doesn’t, make sure you correctly added the
function to the correct file.

Running Django’s test suite for the second time

Once you’ve verified that your patch and your test are working correctly, it’s
a good idea to run the entire Django test suite just to verify that your change
hasn’t introduced any bugs into other areas of Django. While successfully
passing the entire test suite doesn’t guarantee your code is bug free, it does
help identify many bugs and regressions that might otherwise go unnoticed.

To run the entire Django test suite, cd into the Django tests/
directory and run:

Writing Documentation

This is a new feature, so it should be documented. Open the file
docs/topics/http/shortcuts.txt and add the following at the end of the
file:

``make_toast()``
================

.. versionadded:: 2.2

Returns ``'toast'``.

Since this new feature will be in an upcoming release it is also added to the
release notes for the next version of Django. Open the release notes for the
latest version in docs/releases/, which at time of writing is 2.2.txt.
Add a note under the “Minor Features” header:

:mod:`django.shortcuts`
~~~~~~~~~~~~~~~~~~~~~~~

* The new :func:`django.shortcuts.make_toast` function returns ``'toast'``.





For more information on writing documentation, including an explanation of what
the versionadded bit is all about, see
/internals/contributing/writing-documentation. That page also includes
an explanation of how to build a copy of the documentation locally, so you can
preview the HTML that will be generated.




Previewing your changes

Now it’s time to go through all the changes made in our patch. To stage all the
changes ready for commit, run:

Then display the differences between your current copy of Django (with your
changes) and the revision that you initially checked out earlier in the
tutorial with:

Use the arrow keys to move up and down.

diff --git a/django/shortcuts.py b/django/shortcuts.py
index 7ab1df0e9d..8dde9e28d9 100644
--- a/django/shortcuts.py
+++ b/django/shortcuts.py
@@ -156,3 +156,7 @@ def resolve_url(to, *args, **kwargs):

     # Finally, fall back and assume it's a URL
     return to
+
+
+def make_toast():
+    return 'toast'
diff --git a/docs/releases/2.2.txt b/docs/releases/2.2.txt
index 7d85d30c4a..81518187b3 100644
--- a/docs/releases/2.2.txt
+++ b/docs/releases/2.2.txt
@@ -40,6 +40,11 @@ database constraints. Constraints are added to models using the
 Minor features
 --------------

+:mod:`django.shortcuts`
+~~~~~~~~~~~~~~~~~~~~~~~
+
+* The new :func:`django.shortcuts.make_toast` function returns ``'toast'``.
+
 :mod:`django.contrib.admin`
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~

diff --git a/docs/topics/http/shortcuts.txt b/docs/topics/http/shortcuts.txt
index 7b3a3a2c00..711bf6bb6d 100644
--- a/docs/topics/http/shortcuts.txt
+++ b/docs/topics/http/shortcuts.txt
@@ -271,3 +271,12 @@ This example is equivalent to::
 my_objects = list(MyModel.objects.filter(published=True))
 if not my_objects:
 raise Http404("No MyModel matches the given query.")
+
+``make_toast()``
+================
+
+.. function:: make_toast()
+
+.. versionadded:: 2.2
+
+Returns ``'toast'``.
diff --git a/tests/shortcuts/test_make_toast.py b/tests/shortcuts/test_make_toast.py
new file mode 100644
index 0000000000..6f4c627b6e
--- /dev/null
+++ b/tests/shortcuts/test_make_toast.py
@@ -0,0 +1,7 @@
+from django.shortcuts import make_toast
+from django.test import SimpleTestCase
+
+
+class MakeToastTests(SimpleTestCase):
+ def test_make_toast(self):
+ self.assertEqual(make_toast(), 'toast')

When you’re done previewing the patch, hit the q key to return to the
command line. If the patch’s content looked okay, it’s time to commit the
changes.

Committing the changes in the patch

To commit the changes:

This opens up a text editor to type the commit message. Follow the commit
message guidelines and write a message like:

Fixed #99999 -- Added a shortcut function to make toast.

Pushing the commit and making a pull request

After committing the patch, send it to your fork on GitHub (substitute
“ticket_99999” with the name of your branch if it’s different):

You can create a pull request by visiting the Django GitHub page [https://github.com/django/django/]. You’ll see your branch under “Your
recently pushed branches”. Click “Compare & pull request” next to it.

Please don’t do it for this tutorial, but on the next page that displays a
preview of the patch, you would click “Create pull request”.

Next steps

Congratulations, you’ve learned how to make a pull request to Django! Details
of more advanced techniques you may need are in
/internals/contributing/writing-code/working-with-git.

Now you can put those skills to good use by helping to improve Django’s
codebase.

More information for new contributors

Before you get too into writing patches for Django, there’s a little more
information on contributing that you should probably take a look at:

	You should make sure to read Django’s documentation on
claiming tickets and submitting patches.
It covers Trac etiquette, how to claim tickets for yourself, expected
coding style for patches, and many other important details.

	First time contributors should also read Django’s documentation
for first time contributors.
It has lots of good advice for those of us who are new to helping out
with Django.

	After those, if you’re still hungry for more information about
contributing, you can always browse through the rest of
Django’s documentation on contributing.
It contains a ton of useful information and should be your first source
for answering any questions you might have.

Finding your first real ticket

Once you’ve looked through some of that information, you’ll be ready to go out
and find a ticket of your own to write a patch for. Pay special attention to
tickets with the “easy pickings” criterion. These tickets are often much
simpler in nature and are great for first time contributors. Once you’re
familiar with contributing to Django, you can move on to writing patches for
more difficult and complicated tickets.

If you just want to get started already (and nobody would blame you!), try
taking a look at the list of easy tickets that need patches [https://code.djangoproject.com/query?status=new&status=reopened&has_patch=0&easy=1&col=id&col=summary&col=status&col=owner&col=type&col=milestone&order=priority] and the
easy tickets that have patches which need improvement [https://code.djangoproject.com/query?status=new&status=reopened&needs_better_patch=1&easy=1&col=id&col=summary&col=status&col=owner&col=type&col=milestone&order=priority]. If you’re familiar
with writing tests, you can also look at the list of
easy tickets that need tests [https://code.djangoproject.com/query?status=new&status=reopened&needs_tests=1&easy=1&col=id&col=summary&col=status&col=owner&col=type&col=milestone&order=priority]. Just remember to follow the guidelines about
claiming tickets that were mentioned in the link to Django’s documentation on
claiming tickets and submitting patches.

What’s next after creating a pull request?

After a ticket has a patch, it needs to be reviewed by a second set of eyes.
After submitting a pull request, update the ticket metadata by setting the
flags on the ticket to say “has patch”, “doesn’t need tests”, etc, so others
can find it for review. Contributing doesn’t necessarily always mean writing a
patch from scratch. Reviewing existing patches is also a very helpful
contribution. See /internals/contributing/triaging-tickets for details.

Getting started

New to Django? Or to Web development in general? Well, you came to the right
place: read this material to quickly get up and running.

	Django at a glance

	Quick install guide

	Writing your first Django app, part 1

	Writing your first Django app, part 2

	Writing your first Django app, part 3

	Writing your first Django app, part 4

	Writing your first Django app, part 5

	Writing your first Django app, part 6

	Writing your first Django app, part 7

	Advanced tutorial: How to write reusable apps

	What to read next

	Writing your first patch for Django

See also

If you’re new to Python [https://python.org/], you might want to start by getting an idea of what
the language is like. Django is 100% Python, so if you’ve got minimal
comfort with Python you’ll probably get a lot more out of Django.

If you’re new to programming entirely, you might want to start with this
list of Python resources for non-programmers [https://wiki.python.org/moin/BeginnersGuide/NonProgrammers]

If you already know a few other languages and want to get up to speed with
Python quickly, we recommend Dive Into Python [https://www.diveinto.org/python3/]. If that’s not quite your
style, there are many other books about Python [https://wiki.python.org/moin/PythonBooks].

Quick install guide

Before you can use Django, you’ll need to get it installed. We have a
complete installation guide that covers all the
possibilities; this guide will guide you to a simple, minimal installation
that’ll work while you walk through the introduction.

Install Python

Being a Python Web framework, Django requires Python. See
faq-python-version-support for details. Python includes a lightweight
database called SQLite [https://sqlite.org/] so you won’t need to set up a database just yet.

Get the latest version of Python at https://www.python.org/downloads/ or with
your operating system’s package manager.

You can verify that Python is installed by typing python from your shell;
you should see something like:

Python 3.x.y
[GCC 4.x] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Set up a database

This step is only necessary if you’d like to work with a “large” database engine
like PostgreSQL, MySQL, or Oracle. To install such a database, consult the
database installation information.

Install Django

You’ve got three easy options to install Django:

	Install an official release. This
is the best approach for most users.

	Install a version of Django provided by your operating system
distribution.

	Install the latest development version. This option is for enthusiasts who want
the latest-and-greatest features and aren’t afraid of running brand new code.
You might encounter new bugs in the development version, but reporting them
helps the development of Django. Also, releases of third-party packages are
less likely to be compatible with the development version than with the
latest stable release.

Always refer to the documentation that corresponds to the
version of Django you’re using!

If you do either of the first two steps, keep an eye out for parts of the
documentation marked new in development version. That phrase flags
features that are only available in development versions of Django, and
they likely won’t work with an official release.

Verifying

To verify that Django can be seen by Python, type python from your shell.
Then at the Python prompt, try to import Django:

>>> import django
>>> print(django.get_version())
latest

You may have another version of Django installed.

That’s it!

That’s it – you can now move onto the tutorial.

Django at a glance

Because Django was developed in a fast-paced newsroom environment, it was
designed to make common Web-development tasks fast and easy. Here’s an informal
overview of how to write a database-driven Web app with Django.

The goal of this document is to give you enough technical specifics to
understand how Django works, but this isn’t intended to be a tutorial or
reference – but we’ve got both! When you’re ready to start a project, you can
start with the tutorial or dive right into more
detailed documentation.

Design your model

Although you can use Django without a database, it comes with an
object-relational mapper [https://en.wikipedia.org/wiki/Object-relational_mapping] in which you describe your database layout in Python
code.

The data-model syntax offers many rich ways of
representing your models – so far, it’s been solving many years’ worth of
database-schema problems. Here’s a quick example:

mysite/news/models.py

from django.db import models

class Reporter(models.Model):
 full_name = models.CharField(max_length=70)

 def __str__(self):
 return self.full_name

class Article(models.Model):
 pub_date = models.DateField()
 headline = models.CharField(max_length=200)
 content = models.TextField()
 reporter = models.ForeignKey(Reporter, on_delete=models.CASCADE)

 def __str__(self):
 return self.headline

Install it

Next, run the Django command-line utility to create the database tables
automatically:

The :djadmin:`migrate` command looks at all your available models and creates
tables in your database for whichever tables don’t already exist, as well as
optionally providing much richer schema control.

Enjoy the free API

With that, you’ve got a free, and rich, Python API
to access your data. The API is created on the fly, no code generation
necessary:

Import the models we created from our "news" app
>>> from news.models import Article, Reporter

No reporters are in the system yet.
>>> Reporter.objects.all()
<QuerySet []>

Create a new Reporter.
>>> r = Reporter(full_name='John Smith')

Save the object into the database. You have to call save() explicitly.
>>> r.save()

Now it has an ID.
>>> r.id
1

Now the new reporter is in the database.
>>> Reporter.objects.all()
<QuerySet [<Reporter: John Smith>]>

Fields are represented as attributes on the Python object.
>>> r.full_name
'John Smith'

Django provides a rich database lookup API.
>>> Reporter.objects.get(id=1)
<Reporter: John Smith>
>>> Reporter.objects.get(full_name__startswith='John')
<Reporter: John Smith>
>>> Reporter.objects.get(full_name__contains='mith')
<Reporter: John Smith>
>>> Reporter.objects.get(id=2)
Traceback (most recent call last):
 ...
DoesNotExist: Reporter matching query does not exist.

Create an article.
>>> from datetime import date
>>> a = Article(pub_date=date.today(), headline='Django is cool',
... content='Yeah.', reporter=r)
>>> a.save()

Now the article is in the database.
>>> Article.objects.all()
<QuerySet [<Article: Django is cool>]>

Article objects get API access to related Reporter objects.
>>> r = a.reporter
>>> r.full_name
'John Smith'

And vice versa: Reporter objects get API access to Article objects.
>>> r.article_set.all()
<QuerySet [<Article: Django is cool>]>

The API follows relationships as far as you need, performing efficient
JOINs for you behind the scenes.
This finds all articles by a reporter whose name starts with "John".
>>> Article.objects.filter(reporter__full_name__startswith='John')
<QuerySet [<Article: Django is cool>]>

Change an object by altering its attributes and calling save().
>>> r.full_name = 'Billy Goat'
>>> r.save()

Delete an object with delete().
>>> r.delete()

A dynamic admin interface: it’s not just scaffolding – it’s the whole house

Once your models are defined, Django can automatically create a professional,
production ready administrative interface –
a website that lets authenticated users add, change and delete objects. It’s
as easy as registering your model in the admin site:

mysite/news/models.py

from django.db import models

class Article(models.Model):
 pub_date = models.DateField()
 headline = models.CharField(max_length=200)
 content = models.TextField()
 reporter = models.ForeignKey(Reporter, on_delete=models.CASCADE)

mysite/news/admin.py

from django.contrib import admin

from . import models

admin.site.register(models.Article)

The philosophy here is that your site is edited by a staff, or a client, or
maybe just you – and you don’t want to have to deal with creating backend
interfaces just to manage content.

One typical workflow in creating Django apps is to create models and get the
admin sites up and running as fast as possible, so your staff (or clients) can
start populating data. Then, develop the way data is presented to the public.

Design your URLs

A clean, elegant URL scheme is an important detail in a high-quality Web
application. Django encourages beautiful URL design and doesn’t put any cruft
in URLs, like .php or .asp.

To design URLs for an app, you create a Python module called a URLconf. A table of contents for your app, it contains a simple
mapping between URL patterns and Python callback functions. URLconfs also serve
to decouple URLs from Python code.

Here’s what a URLconf might look like for the Reporter/Article
example above:

mysite/news/urls.py

from django.urls import path

from . import views

urlpatterns = [
 path('articles/<int:year>/', views.year_archive),
 path('articles/<int:year>/<int:month>/', views.month_archive),
 path('articles/<int:year>/<int:month>/<int:pk>/', views.article_detail),
]

The code above maps URL paths to Python callback functions (“views”). The path
strings use parameter tags to “capture” values from the URLs. When a user
requests a page, Django runs through each path, in order, and stops at the
first one that matches the requested URL. (If none of them matches, Django
calls a special-case 404 view.) This is blazingly fast, because the paths are
compiled into regular expressions at load time.

Once one of the URL patterns matches, Django calls the given view, which is a
Python function. Each view gets passed a request object – which contains
request metadata – and the values captured in the pattern.

For example, if a user requested the URL “/articles/2005/05/39323/”, Django
would call the function news.views.article_detail(request,
year=2005, month=5, pk=39323).

Write your views

Each view is responsible for doing one of two things: Returning an
HttpResponse object containing the content for the
requested page, or raising an exception such as Http404.
The rest is up to you.

Generally, a view retrieves data according to the parameters, loads a template
and renders the template with the retrieved data. Here’s an example view for
year_archive from above:

mysite/news/views.py

from django.shortcuts import render

from .models import Article

def year_archive(request, year):
 a_list = Article.objects.filter(pub_date__year=year)
 context = {'year': year, 'article_list': a_list}
 return render(request, 'news/year_archive.html', context)

This example uses Django’s template system, which has
several powerful features but strives to stay simple enough for non-programmers
to use.

Design your templates

The code above loads the news/year_archive.html template.

Django has a template search path, which allows you to minimize redundancy among
templates. In your Django settings, you specify a list of directories to check
for templates with :setting:`DIRS <TEMPLATES-DIRS>`. If a template doesn’t exist
in the first directory, it checks the second, and so on.

Let’s say the news/year_archive.html template was found. Here’s what that
might look like:

mysite/news/templates/news/year_archive.html

{% extends "base.html" %}

{% block title %}Articles for {{ year }}{% endblock %}

{% block content %}
<h1>Articles for {{ year }}</h1>

{% for article in article_list %}
 <p>{{ article.headline }}</p>
 <p>By {{ article.reporter.full_name }}</p>
 <p>Published {{ article.pub_date|date:"F j, Y" }}</p>
{% endfor %}
{% endblock %}

Variables are surrounded by double-curly braces. {{ article.headline }}
means “Output the value of the article’s headline attribute.” But dots aren’t
used only for attribute lookup. They also can do dictionary-key lookup, index
lookup and function calls.

Note {{ article.pub_date|date:"F j, Y" }} uses a Unix-style “pipe” (the “|”
character). This is called a template filter, and it’s a way to filter the value
of a variable. In this case, the date filter formats a Python datetime object in
the given format (as found in PHP’s date function).

You can chain together as many filters as you’d like. You can write custom
template filters. You can write
custom template tags, which run custom
Python code behind the scenes.

Finally, Django uses the concept of “template inheritance”. That’s what the
{% extends "base.html" %} does. It means “First load the template called
‘base’, which has defined a bunch of blocks, and fill the blocks with the
following blocks.” In short, that lets you dramatically cut down on redundancy
in templates: each template has to define only what’s unique to that template.

Here’s what the “base.html” template, including the use of static files, might look like:

mysite/templates/base.html

{% load static %}
<html>
<head>
 <title>{% block title %}{% endblock %}</title>
</head>
<body>

 {% block content %}{% endblock %}
</body>
</html>

Simplistically, it defines the look-and-feel of the site (with the site’s logo),
and provides “holes” for child templates to fill. This makes a site redesign as
easy as changing a single file – the base template.

It also lets you create multiple versions of a site, with different base
templates, while reusing child templates. Django’s creators have used this
technique to create strikingly different mobile versions of sites – simply by
creating a new base template.

Note that you don’t have to use Django’s template system if you prefer another
system. While Django’s template system is particularly well-integrated with
Django’s model layer, nothing forces you to use it. For that matter, you don’t
have to use Django’s database API, either. You can use another database
abstraction layer, you can read XML files, you can read files off disk, or
anything you want. Each piece of Django – models, views, templates – is
decoupled from the next.

This is just the surface

This has been only a quick overview of Django’s functionality. Some more useful
features:

	A caching framework that integrates with memcached
or other backends.

	A syndication framework that makes
creating RSS and Atom feeds as easy as writing a small Python class.

	More sexy automatically-generated admin features – this overview barely
scratched the surface.

The next obvious steps are for you to download Django [https://www.djangoproject.com/download/], read the
tutorial and join the community [https://www.djangoproject.com/community/]. Thanks for your
interest!

Advanced tutorial: How to write reusable apps

This advanced tutorial begins where Tutorial 7
left off. We’ll be turning our Web-poll into a standalone Python package
you can reuse in new projects and share with other people.

If you haven’t recently completed Tutorials 1–7, we encourage you to review
these so that your example project matches the one described below.

Reusability matters

It’s a lot of work to design, build, test and maintain a web application. Many
Python and Django projects share common problems. Wouldn’t it be great if we
could save some of this repeated work?

Reusability is the way of life in Python. The Python Package Index (PyPI) [https://pypi.org/] has a vast range of packages you can use in your own
Python programs. Check out Django Packages [https://djangopackages.org] for
existing reusable apps you could incorporate in your project. Django itself is
also just a Python package. This means that you can take existing Python
packages or Django apps and compose them into your own web project. You only
need to write the parts that make your project unique.

Let’s say you were starting a new project that needed a polls app like the one
we’ve been working on. How do you make this app reusable? Luckily, you’re well
on the way already. In Tutorial 3, we saw how we
could decouple polls from the project-level URLconf using an include.
In this tutorial, we’ll take further steps to make the app easy to use in new
projects and ready to publish for others to install and use.

Package? App?

A Python package provides a way of grouping related Python code for
easy reuse. A package contains one or more files of Python code (also known
as “modules”).

A package can be imported with import foo.bar or from foo import
bar. For a directory (like polls) to form a package, it must contain
a special file __init__.py, even if this file is empty.

A Django application is just a Python package that is specifically
intended for use in a Django project. An application may use common Django
conventions, such as having models, tests, urls, and views
submodules.

Later on we use the term packaging to describe the process of making a
Python package easy for others to install. It can be a little confusing, we
know.

Your project and your reusable app

After the previous tutorials, our project should look like this:

mysite/
 manage.py
 mysite/
 __init__.py
 settings.py
 urls.py
 wsgi.py
 polls/
 __init__.py
 admin.py
 migrations/
 __init__.py
 0001_initial.py
 models.py
 static/
 polls/
 images/
 background.gif
 style.css
 templates/
 polls/
 detail.html
 index.html
 results.html
 tests.py
 urls.py
 views.py
 templates/
 admin/
 base_site.html

You created mysite/templates in Tutorial 7,
and polls/templates in Tutorial 3. Now perhaps
it is clearer why we chose to have separate template directories for the
project and application: everything that is part of the polls application is in
polls. It makes the application self-contained and easier to drop into a
new project.

The polls directory could now be copied into a new Django project and
immediately reused. It’s not quite ready to be published though. For that, we
need to package the app to make it easy for others to install.

Installing some prerequisites

The current state of Python packaging is a bit muddled with various tools. For
this tutorial, we’re going to use setuptools [https://pypi.org/project/setuptools/] to build our package. It’s the
recommended packaging tool (merged with the distribute fork). We’ll also be
using pip [https://pypi.org/project/pip/] to install and uninstall it. You should install these
two packages now. If you need help, you can refer to how to install
Django with pip. You can install setuptools
the same way.

Packaging your app

Python packaging refers to preparing your app in a specific format that can
be easily installed and used. Django itself is packaged very much like
this. For a small app like polls, this process isn’t too difficult.

	First, create a parent directory for polls, outside of your Django
project. Call this directory django-polls.

Choosing a name for your app

When choosing a name for your package, check resources like PyPI to avoid
naming conflicts with existing packages. It’s often useful to prepend
django- to your module name when creating a package to distribute.
This helps others looking for Django apps identify your app as Django
specific.

Application labels (that is, the final part of the dotted path to
application packages) must be unique in :setting:`INSTALLED_APPS`.
Avoid using the same label as any of the Django contrib packages, for example auth, admin, or
messages.

	Move the polls directory into the django-polls directory.

	Create a file django-polls/README.rst with the following contents:

django-polls/README.rst

=====
Polls
=====

Polls is a simple Django app to conduct Web-based polls. For each
question, visitors can choose between a fixed number of answers.

Detailed documentation is in the "docs" directory.

Quick start

1. Add "polls" to your INSTALLED_APPS setting like this::

 INSTALLED_APPS = [
 ...
 'polls',
]

2. Include the polls URLconf in your project urls.py like this::

 path('polls/', include('polls.urls')),

3. Run `python manage.py migrate` to create the polls models.

4. Start the development server and visit http://127.0.0.1:8000/admin/
 to create a poll (you'll need the Admin app enabled).

5. Visit http://127.0.0.1:8000/polls/ to participate in the poll.

	Create a django-polls/LICENSE file. Choosing a license is beyond the
scope of this tutorial, but suffice it to say that code released publicly
without a license is useless. Django and many Django-compatible apps are
distributed under the BSD license; however, you’re free to pick your own
license. Just be aware that your licensing choice will affect who is able
to use your code.

	Next we’ll create a setup.py file which provides details about how to
build and install the app. A full explanation of this file is beyond the
scope of this tutorial, but the setuptools docs [https://setuptools.readthedocs.io/en/latest/] have a good
explanation. Create a file django-polls/setup.py with the following
contents:

django-polls/setup.py

import os
from setuptools import find_packages, setup

with open(os.path.join(os.path.dirname(__file__), 'README.rst')) as readme:
 README = readme.read()

allow setup.py to be run from any path
os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir)))

setup(
 name='django-polls',
 version='0.1',
 packages=find_packages(),
 include_package_data=True,
 license='BSD License', # example license
 description='A simple Django app to conduct Web-based polls.',
 long_description=README,
 url='https://www.example.com/',
 author='Your Name',
 author_email='yourname@example.com',
 classifiers=[
 'Environment :: Web Environment',
 'Framework :: Django',
 'Framework :: Django :: X.Y', # replace "X.Y" as appropriate
 'Intended Audience :: Developers',
 'License :: OSI Approved :: BSD License', # example license
 'Operating System :: OS Independent',
 'Programming Language :: Python',
 'Programming Language :: Python :: 3.5',
 'Programming Language :: Python :: 3.6',
 'Topic :: Internet :: WWW/HTTP',
 'Topic :: Internet :: WWW/HTTP :: Dynamic Content',
],
)

	Only Python modules and packages are included in the package by default. To
include additional files, we’ll need to create a MANIFEST.in file. The
setuptools docs referred to in the previous step discuss this file in more
details. To include the templates, the README.rst and our LICENSE
file, create a file django-polls/MANIFEST.in with the following
contents:

django-polls/MANIFEST.in

include LICENSE
include README.rst
recursive-include polls/static *
recursive-include polls/templates *

	It’s optional, but recommended, to include detailed documentation with your
app. Create an empty directory django-polls/docs for future
documentation. Add an additional line to django-polls/MANIFEST.in:

recursive-include docs *

Note that the docs directory won’t be included in your package unless
you add some files to it. Many Django apps also provide their documentation
online through sites like readthedocs.org [https://readthedocs.org].

	Try building your package with python setup.py sdist (run from inside
django-polls). This creates a directory called dist and builds your
new package, django-polls-0.1.tar.gz.

For more information on packaging, see Python’s Tutorial on Packaging and
Distributing Projects [https://packaging.python.org/distributing/].

Using your own package

Since we moved the polls directory out of the project, it’s no longer
working. We’ll now fix this by installing our new django-polls package.

Installing as a user library

The following steps install django-polls as a user library. Per-user
installs have a lot of advantages over installing the package system-wide,
such as being usable on systems where you don’t have administrator access
as well as preventing the package from affecting system services and other
users of the machine.

Note that per-user installations can still affect the behavior of system
tools that run as that user, so virtualenv is a more robust solution
(see below).

	To install the package, use pip (you already installed it, right?):

pip install --user django-polls/dist/django-polls-0.1.tar.gz

	With luck, your Django project should now work correctly again. Run the
server again to confirm this.

	To uninstall the package, use pip:

pip uninstall django-polls

Publishing your app

Now that we’ve packaged and tested django-polls, it’s ready to share with
the world! If this wasn’t just an example, you could now:

	Email the package to a friend.

	Upload the package on your website.

	Post the package on a public repository, such as the Python Package Index
(PyPI) [https://pypi.org/]. packaging.python.org [https://packaging.python.org] has a good
tutorial [https://packaging.python.org/distributing/#uploading-your-project-to-pypi]
for doing this.

Installing Python packages with virtualenv

Earlier, we installed the polls app as a user library. This has some
disadvantages:

	Modifying the user libraries can affect other Python software on your system.

	You won’t be able to run multiple versions of this package (or others with
the same name).

Typically, these situations only arise once you’re maintaining several Django
projects. When they do, the best solution is to use virtualenv [https://virtualenv.pypa.io/]. This tool allows you to maintain multiple
isolated Python environments, each with its own copy of the libraries and
package namespace.

What to read next

So you’ve read all the introductory material and have
decided you’d like to keep using Django. We’ve only just scratched the surface
with this intro (in fact, if you’ve read every single word, you’ve read about
5% of the overall documentation).

So what’s next?

Well, we’ve always been big fans of learning by doing. At this point you should
know enough to start a project of your own and start fooling around. As you need
to learn new tricks, come back to the documentation.

We’ve put a lot of effort into making Django’s documentation useful, easy to
read and as complete as possible. The rest of this document explains more about
how the documentation works so that you can get the most out of it.

(Yes, this is documentation about documentation. Rest assured we have no plans
to write a document about how to read the document about documentation.)

Finding documentation

Django’s got a lot of documentation – almost 450,000 words and counting –
so finding what you need can sometimes be tricky. A few good places to start
are the Search Page and the Index.

Or you can just browse around!

How the documentation is organized

Django’s main documentation is broken up into “chunks” designed to fill
different needs:

	The introductory material is designed for people new
to Django – or to Web development in general. It doesn’t cover anything
in depth, but instead gives a high-level overview of how developing in
Django “feels”.

	The topic guides, on the other hand, dive deep into
individual parts of Django. There are complete guides to Django’s
model system, template engine, forms framework, and much
more.

This is probably where you’ll want to spend most of your time; if you work
your way through these guides you should come out knowing pretty much
everything there is to know about Django.

	Web development is often broad, not deep – problems span many domains.
We’ve written a set of how-to guides that answer
common “How do I …?” questions. Here you’ll find information about
generating PDFs with Django, writing
custom template tags, and more.

Answers to really common questions can also be found in the FAQ.

	The guides and how-to’s don’t cover every single class, function, and
method available in Django – that would be overwhelming when you’re
trying to learn. Instead, details about individual classes, functions,
methods, and modules are kept in the reference. This is
where you’ll turn to find the details of a particular function or
whatever you need.

	If you are interested in deploying a project for public use, our docs have
several guides for various deployment
setups as well as a deployment checklist
for some things you’ll need to think about.

	Finally, there’s some “specialized” documentation not usually relevant to
most developers. This includes the release notes and
internals documentation for those who want to add
code to Django itself, and a few other things that simply don’t fit
elsewhere.

How documentation is updated

Just as the Django code base is developed and improved on a daily basis, our
documentation is consistently improving. We improve documentation for several
reasons:

	To make content fixes, such as grammar/typo corrections.

	To add information and/or examples to existing sections that need to be
expanded.

	To document Django features that aren’t yet documented. (The list of
such features is shrinking but exists nonetheless.)

	To add documentation for new features as new features get added, or as
Django APIs or behaviors change.

Django’s documentation is kept in the same source control system as its code. It
lives in the docs [https://github.com/django/django/tree/master/docs] directory of our Git repository. Each document online is a
separate text file in the repository.

Where to get it

You can read Django documentation in several ways. They are, in order of
preference:

On the Web

The most recent version of the Django documentation lives at
https://docs.djangoproject.com/en/dev/. These HTML pages are generated
automatically from the text files in source control. That means they reflect the
“latest and greatest” in Django – they include the very latest corrections and
additions, and they discuss the latest Django features, which may only be
available to users of the Django development version. (See
Differences between versions below.)

We encourage you to help improve the docs by submitting changes, corrections and
suggestions in the ticket system [https://code.djangoproject.com/]. The Django developers actively monitor the
ticket system and use your feedback to improve the documentation for everybody.

Note, however, that tickets should explicitly relate to the documentation,
rather than asking broad tech-support questions. If you need help with your
particular Django setup, try the |django-users| mailing list or the #django
IRC channel instead.

In plain text

For offline reading, or just for convenience, you can read the Django
documentation in plain text.

If you’re using an official release of Django, the zipped package (tarball) of
the code includes a docs/ directory, which contains all the documentation
for that release.

If you’re using the development version of Django (aka the master branch), the
docs/ directory contains all of the documentation. You can update your
Git checkout to get the latest changes.

One low-tech way of taking advantage of the text documentation is by using the
Unix grep utility to search for a phrase in all of the documentation. For
example, this will show you each mention of the phrase “max_length” in any
Django document:

As HTML, locally

You can get a local copy of the HTML documentation following a few easy steps:

	Django’s documentation uses a system called Sphinx [http://sphinx-doc.org/] to convert from
plain text to HTML. You’ll need to install Sphinx by either downloading
and installing the package from the Sphinx website, or with pip:

	Then, just use the included Makefile to turn the documentation into
HTML:

$ cd path/to/django/docs
$ make html

You’ll need GNU Make [https://www.gnu.org/software/make/] installed for this.

If you’re on Windows you can alternatively use the included batch file:

cd path\to\django\docs
make.bat html

	The HTML documentation will be placed in docs/_build/html.

Differences between versions

The text documentation in the master branch of the Git repository contains the
“latest and greatest” changes and additions. These changes include
documentation of new features targeted for Django’s next feature
release. For that reason, it’s worth pointing out our policy to highlight
recent changes and additions to Django.

We follow this policy:

	The development documentation at https://docs.djangoproject.com/en/dev/ is
from the master branch. These docs correspond to the latest feature release,
plus whatever features have been added/changed in the framework since then.

	As we add features to Django’s development version, we update the
documentation in the same Git commit transaction.

	To distinguish feature changes/additions in the docs, we use the phrase:
“New in Django Development version” for the version of Django that hasn’t
been released yet, or “New in version X.Y” for released versions.

	Documentation fixes and improvements may be backported to the last release
branch, at the discretion of the committer, however, once a version of
Django is no longer supported, that version
of the docs won’t get any further updates.

	The main documentation Web page [https://docs.djangoproject.com/en/dev/] includes links to documentation for
previous versions. Be sure you are using the version of the docs
corresponding to the version of Django you are using!

 _static/up-pressed.png

_images/admin11t.png
CHOICES

‘CHOICE TEXT

[
I
[

+ Add another Choice

00E

Save andadd another I Save and continue editing

_images/admin12t.png
Home Polls

Select question to change
Action: [(6o 0of1 selected
O auesTioNTEXT DATE PUBLISHED. WAS PUBLISHED RECENTLY
) What'sup? Sept. 3,2015,9:16 p.m.. False

1 question

_images/admin09.png
Home> Polls » Choices »

Add choice

_static/up.png

_images/admin10t.png
Home > Polls > Questions » Add question

Add question

wwe
Date information (Hide)

Date published: Date: [:wm@
e o

CHOICES

Choice: #1
Choice text:
Votes: 0

Choice: #2
Choice text:
Votes: 0

e —
- O

+ Add another Choice

Save and add another | Save and continue editing

_images/tutorial01_01.png
LY

$ django-admin startproject mysite

_images/tutorial01_02.png
...\> django-admin startproject mysite

_images/admin13t.png
Home> Polls

Select question to change
. 0011 seected

O auesmionTex DATE PUBLISHED PUBLISHED RECENTLY? By detsprbished
Any date
Whats .3,2015,9:16 pm.
a] up? Sept.3,2015,9:16 pm. ° Ty
1 question Past 7 days
“This month

This year

_images/admin14t.png
CHOICES

Choice: #1

Choice text:

Choice: #2

“+ Add another Choice

_images/tutorial01_03.png
.. consol

$ python -m django --version

_static/ajax-loader.gif

_images/admin06t.png
Home > Polls > Questions > What's up? Hi

Change history: What's up?

DATE/MME useR AcTION

Sept. 6,2015, 9:21 p.m. elky Changed pub_date.

_images/admin07.png
Home: Polls » Questions » W

Change question

Date published: Date: | 2015-09 Todey | B3
e w00

_images/admin04t.png
Home> Polls.

N+

Select question to change ADD Q

) auesion

) Whatsup?

1 question

_images/admin05t.png
Home Polls » Questions » V

Change question
Question text: What's up?

Date published: Date: 2015-09-06 Today £
Time: 211622 Now ©

Save and add another Save and continue editing

_images/admin08t.png
Home > Polls > Questions » What's up?

Change question

Question text:

Date information.

Date published: Date: 2015-09-06 Today £
e 060

nav.xhtml

 Table of Contents

 		
 Django2.1 Tutotrial Note

 		
 Writing your first Django app, part 1

 		
 套路練習

 		
 Creating a project

 		
 The development server

 		
 Creating the Polls app

 		
 Write your first view

 		
 path() argument: route

 		
 path() argument: view

 		
 path() argument: kwargs

 		
 path() argument: name

 		
 Writing your first Django app, part 2

 		
 Database setup

 		
 Creating models

 		
 Activating models

 		
 Playing with the API

 		
 Introducing the Django Admin

 		
 Creating an admin user

 		
 Start the development server

 		
 Enter the admin site

 		
 Make the poll app modifiable in the admin

 		
 Explore the free admin functionality

 		
 Writing your first Django app, part 3

 		
 Overview

 		
 Writing more views

 		
 Write views that actually do something

 		
 A shortcut: render()

 		
 Raising a 404 error

 		
 A shortcut: get_object_or_404()

 		
 Use the template system

 		
 Removing hardcoded URLs in templates

 		
 Namespacing URL names

 		
 Writing your first Django app, part 4

 		
 Write a simple form

 		
 Use generic views: Less code is better

 		
 Amend URLconf

 		
 Amend views

 		
 Writing your first Django app, part 5

 		
 Introducing automated testing

 		
 What are automated tests?

 		
 Why you need to create tests

 		
 Basic testing strategies

 		
 Writing our first test

 		
 We identify a bug

 		
 Create a test to expose the bug

 		
 Running tests

 		
 Fixing the bug

 		
 More comprehensive tests

 		
 Test a view

 		
 A test for a view

 		
 The Django test client

 		
 Improving our view

 		
 Testing our new view

 		
 Testing the DetailView

 		
 Ideas for more tests

 		
 When testing, more is better

 		
 Further testing

 		
 What’s next?

 		
 Writing your first Django app, part 6

 		
 Customize your app’s look and feel

 		
 Adding a background-image

 		
 Writing your first Django app, part 7

 		
 Customize the admin form

 		
 Adding related objects

 		
 Customize the admin change list

 		
 Customize the admin look and feel

 		
 Customizing your project’s templates

 		
 Customizing your application’s templates

 		
 Customize the admin index page

 		
 What’s next?

_images/admin02.png
ME, ADMIN. VIEW SITE / CHANGE PASSW

Site administration

.
Recent Actions

Groups +Add & Change
Users +Add & Change My Actions

None available

_static/comment.png

_images/admin03t.png
Site administration

AUTHENTICATION AND AUTHORIZATION .
Recent Actions

Groups +Add & Change

Users +Add & Change My Actions

POLLS

Questions +Add & Change

None available

_static/down-pressed.png

_static/comment-bright.png

_images/admin01.png
Django administration

Username:

Password:

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

